Abrasive wear behavior of Al-TiB2 and Al-TiB2-nano-graphite metal matrix composites

Author(s):  
Suswagata Poria ◽  
Goutam Sutradhar ◽  
Prasanta Sahoo

This paper deals with abrasive wear behavior of two different composite materials namely Al-TiB2 and Al-TiB2-nano-graphite. At the time of fabrication, ultrasonic vibration is used along with mechanical stirrer to obtain uniform dispersion of micro (TiB2) and nano (graphite) reinforcement phase. Uniform dispersion is confirmed through SEM images of cast composites. Micro-hardness values are obtained for composites and base alloy. Wear tests under two-body abrasion are performed by a tribological test apparatus where composite pins are being rubbed against a disc holding different grades of SiC abrasives: 240 grit, 320 grit and 400 grit. Operating load is varied between 10N and 30N while sliding speed and duration of sliding are kept fixed. Effects of load, reinforcing phase content and abrasive grit size on abrasive wear and friction behavior have been evaluated. Al-TiB2 composites demonstrate higher wear resistance and better friction behavior in comparison with base alloy under all operating conditions. Addition of nano-graphite phase contributes in achieving better abrasive wear and friction performance of Al-TiB2 composites. With increase in grit size, wear reduces for composites and base alloy while wear increases with load. Worn surfaces of samples and emery papers are studied using SEM micrographs and EDX maps. Wear debris at different operating conditions are studied also using SEM and EDX. Operative wear mechanisms are identified from the experimental results.

Author(s):  
Ramendra Kumar Gupta ◽  
Nitesh Vashishtha ◽  
S.G. Sapate ◽  
V. Udhayabanu ◽  
D R Peshwe

Abstract In the present study, the abrasive wear behavior of Al-4.4 wt.% Cu composite reinforced with 2 vol.% graphite particle (Grp) has been investigated. In the preparation of composite, Ultrasonic Treatment (UT) is provided in the composite melt for the uniform distribution of reinforcement particles. Two bond abrasive wear tests are conducted for composites treated with ultrasound and without UT and base alloy. The results of abrasive wear studies indicate that at 5 and 10 Newton (N) loads, the composite with UT has a higher coefficient of friction (COF) and wear resistance than that of the base alloy (Al-4.4 wt.% Cu). Whereas, at 15 and 20 N load, the value of COF and wear resistance is lower for the composite. Two abrasive wear mechanisms micro-plowing and micro-cutting have been observed during the wear tests of base alloy and composites. The analysis of worn-out sample surfaces at higher load reveals that softened material layer due to localized elevation in temperature between two contact surfaces during wearing acts as a tribolayer in base alloy while in composites both softened material layer and graphite layer have worked together as tribolayer.


2017 ◽  
Vol 69 (2) ◽  
pp. 149-157 ◽  
Author(s):  
N.C. Kaushik ◽  
R.N. Rao

Purpose The purpose of the present study is to analyze the wear behavior of developed aluminum hybrid composites under high-stress conditions through developed power law and quadratic equations. Design/methodology/approach The abrasive wear behavior of Al–Mg–Si (Al 6082) alloy reinforced with hard silicon carbide (SiC) and soft graphite (Gr) particulates fabricated by stir casting route was studied at loads of 5-15 N, sliding distance of 75 m and abrasive grit size of 100-200 μm. The power law and quadratic equations were developed to understand the wear behavior with respect to the load applied and the abrasive grit size. The worn surfaces of the test specimens and grit papers were examined under scanning electron microscope. Findings The density and hardness of the hybrid composites decreased when compared to Al–SiC composites, whereas the wear properties improved because of the presence of Gr. There was further improvement in the wear properties of the materials because of T6 heat treatment. The change in abrasive wear mechanism was observed at a grit size of 125 μm when traversed from alloy to hybrid composite as indicated in terms of exponents in the power law equation. The worn surfaces of hybrid composite pins were comparable with those of alloy pins. Practical implications In the automobile sector, components like cylinder liner, piston, crankshafts, brake drums, etc. also undergo abrasive wear along with sliding against the counter surface in working conditions. Originality/value The results prove that better wear resistance was obtained under the abrasion condition.


MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


Wear ◽  
2009 ◽  
Vol 266 (9-10) ◽  
pp. 995-1002 ◽  
Author(s):  
K. Venkateswarlu ◽  
V. Rajinikanth ◽  
T. Naveen ◽  
Dhiraj Prasad Sinha ◽  
Atiquzzaman ◽  
...  

2015 ◽  
Vol 68 (5) ◽  
pp. 799-807 ◽  
Author(s):  
V. Chauhan ◽  
P. Dubey ◽  
S. Verma ◽  
R. Jayaganthan ◽  
R. Chandra

Sign in / Sign up

Export Citation Format

Share Document