Numerical and experimental study on knocking combustion in turbocharged direct-injection engines for a wide range of operating conditions

2021 ◽  
pp. 146808742110601
Author(s):  
Magnus Kircher ◽  
Emmeram Meindl ◽  
Christian Hasse

A combined experimental and numerical study is conducted on knocking combustion in turbocharged direct-injection spark-ignition engines. The experimental study is based on parameter variations in the intake-manifold temperature and pressure, as well as the air-fuel equivalence ratio. The transition between knocking and non-knocking operating conditions is studied by conducting a spark timing sweep for each operating parameter. By correlating combustion and global knock quantities, the global knock trends of the mean cycles are identified. Further insight is gained by a detailed analysis based on single cycles. The extensive experimental data is then used as an input to support numerical investigations. Based on 0D knock modeling, the global knock trends are investigated for all operation points. Taking into consideration the influence of nitric oxide on auto-ignition significantly improves the knock model prediction. Additionally, the origin of the observed cyclic variability of knock is investigated. The crank angle at knock onset in 1000 consecutive single cycles is determined using a multi-cycle 0D knock simulation based on detailed single-cycle experimental data. The overall trend is captured well by the simulation, while fluctuations are underpredicted. As one potential reason for the remaining differences of the 0D model predictions local phenomena are investigated. Therefore, 3D CFD simulations of selected operating points are performed to explore local inhomogeneities in the mixture fraction and temperature. The previously developed generalized Knock Integral Method (gKIM), which considers the detailed kinetics and turbulence-chemistry interaction of an ignition progress variable, is improved and applied. The determined influence of spark timing on the mean crank angle at knock onset agrees well with experimental data. In addition, spatially resolved information on the expected position of auto-ignition is analyzed to investigate causes of knocking combustion.

Author(s):  
Carlo Cravero ◽  
Mario La Rocca ◽  
Andrea Ottonello

The use of twin scroll volutes in radial turbine for turbocharging applications has several advantages over single passage volute related to the engine matching and to the overall compactness. Twin scroll volutes are of increasing interest in power unit development but the open scientific literature on their performance and modelling is still quite limited. In the present work the performance of a twin scroll volute for a turbocharger radial turbine are investigated in some detail in a wide range of operating conditions at both full and partial admission. A CFD model for the volute have been developed and preliminary validated against experimental data available for the radial turbine. Then the numerical model has been used to generate the database of solutions that have been investigated and used to extract the performance. Different parameters and indices are introduced to describe the volute aerodynamic performance in the wide range of operating conditions chosen. The above parameters can be used for volute development or matching with a given rotor or efficiently implemented in automatic design optimization strategies.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Angelo Pasini ◽  
Ruzbeh Hadavandi ◽  
Dario Valentini ◽  
Giovanni Pace ◽  
Luca d'Agostino

A high-head three-bladed inducer has been equipped with pressure taps on the hub along the blade channels with the aim of more closely investigating the dynamics of cavitation-induced instabilities developing in the impeller flow. Spectral analysis of the pressure signals obtained from two sets of transducers mounted both in the stationary and rotating frames has allowed to characterize the nature, intensity, and interactions of the main flow instabilities detected in the experiments: subsynchronous rotating cavitation (RC), cavitation surge (CS), and a high-order axial surge oscillation. A dynamic model of the unsteady flow in the blade channels has been developed based on experimental data and on suitable descriptions of the mean flow and the oscillations of the cavitating volume. The model has been used for estimating at the inducer operating conditions of interest the intensity of the flow oscillations associated with the occurrence of the CS mode generated by RC in the inducer inlet.


Author(s):  
J. Paulon ◽  
C. Fradin ◽  
J. Poulain

Industrial pumps are generally used in a wide range of operating conditions from almost zero mass flow to mass flows larger than the design value. It has been often noted that the head-mass flow characteristic, at constant speed, presents a negative bump as the mass flow is somewhat smaller than the design mass flows. Flow and mechanical instabilities appear, which are unsafe for the facility. An experimental study has been undertaken in order to analyze and if possible to palliate these difficulties. A detailed flow analyzis has shown strong three dimensional effects and flow separations. From this better knowledge of the flow field, a particular device was designed and a strong attenuation of the negative bump was obtained.


Author(s):  
Noah Van Dam ◽  
Wei Zeng ◽  
Magnus Sjöberg ◽  
Sibendu Som

The use of Large-eddy Simulations (LES) has increased due to their ability to resolve the turbulent fluctuations of engine flows and capture the resulting cycle-to-cycle variability. One drawback of LES, however, is the requirement to run multiple engine cycles to obtain the necessary cycle statistics for full validation. The standard method to obtain the cycles by running a single simulation through many engine cycles sequentially can take a long time to complete. Recently, a new strategy has been proposed by our research group to reduce the amount of time necessary to simulate the many engine cycles by running individual engine cycle simulations in parallel. With modern large computing systems this has the potential to reduce the amount of time necessary for a full set of simulated engine cycles to finish by up to an order of magnitude. In this paper, the Parallel Perturbation Methodology (PPM) is used to simulate up to 35 engine cycles of an optically accessible, pent-roof Direct-injection Spark-ignition (DISI) engine at two different motored engine operating conditions, one throttled and one un-throttled. Comparisons are made against corresponding sequential-cycle simulations to verify the similarity of results using either methodology. Mean results from the PPM approach are very similar to sequential-cycle results with less than 0.5% difference in pressure and a magnitude structure index (MSI) of 0.95. Differences in cycle-to-cycle variability (CCV) predictions are larger, but close to the statistical uncertainty in the measurement for the number of cycles simulated. PPM LES results were also compared against experimental data. Mean quantities such as pressure or mean velocities were typically matched to within 5–10%. Pressure CCVs were under-predicted, mostly due to the lack of any perturbations in the pressure boundary conditions between cycles. Velocity CCVs for the simulations had the same average magnitude as experiments, but the experimental data showed greater spatial variation in the root-mean-square (RMS). Conversely, circular standard deviation results showed greater repeatability of the flow directionality and swirl vortex positioning than the simulations.


Author(s):  
A. Vasilyev ◽  
V. Zakharov ◽  
O. Chelebyan ◽  
O. Zubkova

Abstract At the ASME Turbo Expo 2018 conference held in Oslo (Norway) on the 11th-15th of June 2018, the paper GT2018-75419 «Experience of Low-Emission Combustion of Aviation and Bio Fuels in Individual Flames after Front Mini-Modules of a Combustion Chamber» was published. This paper continues the studies devoted to the low-emission combustion of liquid fuels in GTE combustors. The paper presents a description of more detailed studies of the front module with a staged pneumatic fuel spray. The aerodynamic computations of the front module were conducted, and the disperse characteristics of the fuel-air spray were measured. The experimental research was carried out in two directions: 1) probing of the 3-burner sector flame tube at the distance of one third of its length (temperature field and gas sampling); 2) numerical study of the model combustor with actual arrangement of the modules in the dome within a wide range of fuel-air ratio. The calculated and experimental data of velocity field behind the front module were compared. And new data about the flame structure inside the test sector were obtained. Experimental data confirm the results of preliminary studies of the 3-burner sector: combustion efficiency is higher than 99.8%, EiNOx is at the level of 2–3 g/fuel kg at the combustor inlet air temperature of 680K and fuel-air ratio of 0.0225. The conducted research allowed to receive additional information on the influence of some design units on the pollutant emission and to estimate the different elements of computational methods for simulation of a low-emission combustor with a multi-atomizer dome.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5223
Author(s):  
Guanting Li ◽  
Xiumin Yu ◽  
Ping Sun ◽  
Decheng Li

Split hydrogen direct injection (SHDI) has been proved capable of better efficiency and fewer emissions. Therefore, to investigate SHDI deeply, a numerical study on the effect of second injection timing was presented at a gasoline/hydrogen spark ignition (SI) engine with SHDI. With an excess air ratio of 1.5, five different second injection timings achieved five kinds of hydrogen mixture distribution (HMD), which was the main factor affecting the engine performances. With SHDI, since the HMD is manageable, the engine can achieve better efficiency and fewer emissions. When the second injection timing was 105° crank angle (CA) before top dead center (BTDC), the Pmax was the highest and the position of the Pmax was the earliest. Compared with the single hydrogen direct injection (HDI), the NOX, CO and HC emissions with SHDI were reduced by 20%, 40% and 72% respectively.


Author(s):  
Daniel Probst ◽  
Sameera Wijeyakulasuriya ◽  
Eric Pomraning ◽  
Janardhan Kodavasal ◽  
Riccardo Scarcelli ◽  
...  

High cycle-to-cycle variation (CCV) is detrimental to engine performance, as it leads to poor combustion and high noise and vibration. In this work, CCV in a gasoline engine is studied using large eddy simulation (LES). The engine chosen as the basis of this work is a single-cylinder gasoline direct injection (GDI) research engine. Two stoichiometric part-load engine operating points (6 BMEP, 2000 RPM) were evaluated: a non-dilute (0% EGR) case and a dilute (18% EGR) case. The experimental data for both operating conditions had 500 cycles. The measured CCV in IMEP was 1.40% for the non-dilute case and 7.78% for the dilute case. To estimate CCV from simulation, perturbed concurrent cycles of engine simulations were compared to consecutively obtained engine cycles. The motivation behind this is that running consecutive cycles to estimate CCV is quite time-consuming. For example, running 100 consecutive cycles requires 2–3 months (on a typical cluster), however, by running concurrently one can potentially run all 100 cycles at the same time and reduce the overall turnaround time for 100 cycles to the time taken for a single cycle (2 days). The goal of this paper is to statistically determine if concurrent cycles, with a perturbation applied to each individual cycle at the start, can be representative of consecutively obtained cycles and accurately estimate CCV. 100 cycles were run for each case to obtain statistically valid results. The concurrent cycles began at different timings before the combustion event, with the motivation to identify the closest time before spark to minimize the run time. Only a single combustion cycle was run for each concurrent case. The calculated standard deviation of peak pressure and coefficient of variance (COV) of indicated mean effective pressure (IMEP) were compared between the consecutive and concurrent methods to quantify CCV. It was found that the concurrent method could be used to predict CCV with either a velocity or numerical perturbation. A large and small velocity perturbation were compared and both produced correct predictions, implying that the type of perturbation is not important to yield a valid realization. Starting the simulation too close to the combustion event, at intake valve close (IVC) or at spark timing, under-predicted the CCV. When concurrent simulations were initiated during or before the intake even, at start of injection (SOI) or earlier, distinct and valid realizations were obtained to accurately predict CCV for both operating points. By simulating CCV with concurrent cycles, the required wall clock time can be reduced from 2–3 months to 1–2 days. Additionally, the required core-hours can be reduced up to 41%, since only a portion of each cycle needs to be simulated.


Author(s):  
Kumud Ajmani ◽  
Hukam C. Mongia ◽  
Phil Lee

An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-2 design. The National Combustion Code (NCC) developed at NASA Glenn Research Center was used to perform reacting flow computations on an LDI-2 combustor configuration with thirteen injector elements arranged in four fuel stages. Reacting computations were performed with a consistent approach for mesh-optimization, liquid spray modeling and kinetics modeling. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were compared with two sets of experimental data at medium and high-power operating conditions, for two different pressure-drop conditions in the combustor. The NCC simulations predicted the combustor exit temperature to within 1–2% of experimental data. The accuracy of the EINOx predictions from the NCC simulations was within 10% to 30% of experimental data.


2019 ◽  
Vol 9 (19) ◽  
pp. 4133 ◽  
Author(s):  
Wang ◽  
Zhang ◽  
Wang ◽  
Han ◽  
Chen

Engine knock has become the prime barrier to significantly improve power density and efficiency of the engines. To further look into the essence of the abnormal combustion, this work studies the working processes of normal combustion and knock combustion under practical engine operating conditions using a three-dimensional computation fluid dynamics (CFD) fluid software CONVERGE (Version 2.3.0, Convergent Science, Inc., Madison, USA). The results show that the tumble in the cylinder is gradually formed with the increase of the valve lift, enhances in the compression stroke and finally is broken due to the extrusion of the piston. The fuel droplets gradually evaporate and move to the intake side under the turbulent and high temperature in the cylinder. During the normal combustion process, the flame propagates faster on the intake side and it facilitates mixture in cylinder combustion. During the knock combustion simulation, the hotspots near the exhaust valve are observed, and the propagating detonation wave caused by multiple hotspots auto-ignition indicates significant effects on knock intensity of in-cylinder pressure.


2003 ◽  
Vol 125 (3) ◽  
pp. 791-796 ◽  
Author(s):  
D. Taraza

The goal of this two-part paper is to develop a methodology using the variation of the measured crankshaft speed to calculate the mean indicated pressure (MIP) of a multicylinder engine and to detect cylinders that are lower contributors to the total engine output. Both the gas pressure torque and the crankshaft’s speed are, under steady-state operating conditions, periodic functions of the crank angle and may be expressed by Fourier series. For the lower harmonic orders, the dynamic response of the crankshaft approaches the response of a rigid body and that makes it is possible to establish correlations between the amplitudes and phases of the corresponding harmonic orders of the crankshaft’s speed and of the gas pressure torque. The inherent cycle-to-cycle variation in the operation of the cylinders requires a statistical approach to the problem. The first part of the paper introduces the statistical model for a harmonic component of the gas pressure torque and determines the correlation between the amplitudes and phases of the harmonic components of the gas pressure torque and the MIP of the engine. In the second part of the paper the statistical model is used to calculate the MIP and to detect deficient cylinders in the operation of a six-cylinder four-stroke diesel engine.


Sign in / Sign up

Export Citation Format

Share Document