scholarly journals Polydatin prevents angiotensin II-induced cardiac hypertrophy and myocardial superoxide generation

2014 ◽  
Vol 240 (10) ◽  
pp. 1352-1361 ◽  
Author(s):  
Qi Zhang ◽  
Yingying Tan ◽  
Nan Zhang ◽  
Fanrong Yao

Our studies and others recently demonstrate that polydatin, a resveratrol glucoside, has antioxidative and cardioprotective effects. This study aims to investigate the direct effects of polydatin on Ang II-induced cardiac hypertrophy to explore the potential role of polydatin in cardioprotection. Our results showed that in primary cultured cardiomyocytes, polydatin blocked Ang II-induced cardiac hypertrophy in a dose-dependent manner, which were associated with reduction in the cell surface area and [3H]leucine incorporation, as well as attenuation of the mRNA expressions of atrial natriuretic factor and β-myosin heavy chain. Furthermore, polydatin prevented rat cardiac hypertrophy induced by Ang II infusion, as assessed by heart weight-to-body weight ratio, cross-sectional area of cardiomyocyte, and gene expression of hypertrophic markers. Further investigation demonstrated that polydatin attenuated the Ang II-induced increase in the reactive oxygen species levels and NADPH oxidase activity in vivo and in vitro. Polydatin also blocked the Ang II-stimulated increases of Nox4 and Nox2 expression in cultured cardiomyocytes and the hearts of Ang II-infused rats. Our results indicate that polydatin has the potential to protect against Ang II-mediated cardiac hypertrophy through suppression of NADPH oxidase activity and superoxide production. These observations may shed new light on the understanding of the cardioprotective effect of polydatin.

2010 ◽  
Vol 298 (2) ◽  
pp. F401-F407 ◽  
Author(s):  
Md. Abdul Hye Khan ◽  
Mohammed Toriqul Islam ◽  
Alexander Castillo ◽  
Dewan Syed Abdul Majid

To examine the functional interaction between superoxide dismutase (SOD) and NADPH oxidase activity, we assessed renal responses to acute intra-arterial infusion of ANG II (0.5 ng·kg−1·min−1) before and during administration of a SOD inhibitor, diethyldithiocarbamate (DETC, 0.5 mg·kg−1·min−1), in enalaprilat-pretreated (33 μg·kg−1·min−1) rats ( n = 11). Total (RBF) and regional (cortical, CBF; medullary; MBF) renal blood flows were determined by Transonic and laser-Doppler flowmetry, respectively. Renal cortical and medullary tissue NADPH oxidase activity in vitro was determined using the lucigenin-chemiluminescence method. DETC treatment alone resulted in decreases in RBF, CBF, MBF, glomerular filtration rate (GFR), urine flow (V), and sodium excretion (UNaV) as reported previously. Before DETC, ANG II infusion decreased RBF (−18 ± 3%), CBF (−16 ± 3%), MBF [−5 ± 6%; P = not significant (NS)], GFR (−31 ± 4%), V (−34 ± 2%), and UNaV (−53 ± 3%). During DETC infusion, ANG II also caused similar reductions in RBF (−20 ± 4%), CBF (−19 ± 3%), MBF (−2 ± 2; P = NS), and in GFR (−22 ± 7%), whereas renal excretory responses (V; −12 ± 2%; UNaV; −24 ± 4%) were significantly attenuated compared with those before DETC. In in vitro experiments, ANG II (100 μM) enhanced NADPH oxidase activity both in cortical [13,194 ± 1,651 vs. 20,914 ± 2,769 relative light units (RLU)/mg protein] and in medullary (21,296 ± 2,244 vs. 30,597 ± 4,250 RLU/mg protein) tissue. Application of DETC (1 mM) reduced the basal levels and prevented ANG II-induced increases in NADPH oxidase activity in both tissues. These results demonstrate that renal excretory responses to acute ANG II administration are attenuated during SOD inhibition, which seems related to a downregulation of NADPH oxidase in the deficient condition of SOD activity.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Dongmei Liu ◽  
Lie Gao ◽  
Kurtis G Cornish ◽  
Irving H Zucker

In a previous study, we showed that Ang II type I receptor (AT1R) expression increased in the rostral ventrolateral medulla (RVLM) of chronic heart failure (CHF) rabbits and in normal rabbits infused with intracerebroventricular (ICV) Angiotensin II (AngII). The present study investigated if oxidative stress plays a role in Ang II induced AT1R upregulation and its relationship to the transcription factor activator protein 1 (AP1) in CHF rabbits and in the CATHa neuronal cell line. In neuronal cell cultures, Ang II significantly increased AT1R mRNA by 153 ± 22%, P <0.01; c-Jun mRNA by 90 ± 10%, P < 0.01; NADPH oxidase activity by 126 ± 43%, P < 0.01 versus untreated cells; Tempol, Apocynin and the AP 1 inhibitor Tanshinone II reversed the increased AT1R, c-Jun expression and NADPH oxidase activity induced by AngII. We examined the effect of ICV Tempol on expression of these proteins in the RVLM of CHF rabbits. Compared to untreated CHF rabbits Tempol significantly decreased AT1R protein expression (0.88±0.16 vs. 1.6±0.29, P <0.05), phosphorylated Jnk protein (0.10±0.02 vs. 0.31±0.10, P <0.05), and phosphorylated c-Jun (0.02±0.001 vs. 0.14±0.05, P <0.05). These data suggest that Ang II induces AT1R upregulation at the transcriptional level by activation of oxidative stress and AP1 in both cultured cells and in intact brain. Antioxidant agents may be beneficial in CHF by decreasing AT1R expression through the Jnk and AP1 pathway.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Min Sun ◽  
Yan Li ◽  
Wenjie Bu ◽  
Jindong Zhao ◽  
Jianliang Zhu ◽  
...  

The antidiabetic properties and anti-inflammatory effects of Danzhi Jiangtang Capsules (DJC) have been demonstrated in clinical and laboratory experiments. In this study, we explored whether DJC can ameliorate advanced glycation end products- (AGEs-) mediated cell injury and the precise mechanisms of DJC in treating diabetic nephropathy (DN). Western blot analysis was employed to assess the expressions of iNOS, COX2, and SOCS and the phosphorylation of JAK2, STAT1, and STAT3 in glomerular mesangial cells (GMCs) after treatment with DJC. TNF-α, IL-6, and MCP-1 were determined using double-antibody sandwich ELISA. ROS and NADPH oxidase activity were measured by DCFH-DA assay and lucigenin-enhanced chemiluminescence, respectively. DJC significantly reversed the AGEs-induced expression of COX2 and iNOS. Moreover, DJC inhibited the AGEs-induced JAK2-STAT1/STAT3 activation, resulting in the inhibition of inflammatory cytokines such as IL-6, MCP-1, and TNF-αin a concentration-dependent manner. The ability of DJC to suppress STAT activation was also verified by the observation that DJC significantly increased the SOCS3 protein level. DJC reversed the AGEs-induced accumulation of ROS and NADPH oxidase activity, thus confirming that DJC possesses antioxidant activity. The results suggest that the anti-inflammatory effects of DJC in GMCs may be due to its ability to suppress the JAK2-STAT1/STAT3 cascades and reduce ROS production.


2008 ◽  
Vol 295 (1) ◽  
pp. E103-E109 ◽  
Author(s):  
Adam Whaley-Connell ◽  
Javad Habibi ◽  
Shawna A. Cooper ◽  
Vincent G. DeMarco ◽  
Melvin R. Hayden ◽  
...  

Angiotensin II (Ang II) stimulation of the Ang type 1 receptor (AT1R) facilitates myocardial remodeling through NADPH oxidase-mediated generation of oxidative stress. Components of the renin-angiotensin system constitute an autocrine/paracrine unit in the myocardium, including renin, which is the rate-limiting step in the generation of Ang II. This investigation sought to determine whether cardiac oxidative stress and cellular remodeling could be attenuated by in vivo renin inhibition and/or AT1R blockade in a rodent model of chronically elevated tissue Ang II levels, the transgenic (mRen2)27 rat (Ren2). The Ren2 overexpresses the mouse renin transgene with resultant hypertension, insulin resistance, and cardiovascular damage. Young (6- to 7-wk-old) heterozygous (+/−) male Ren2 and age-matched Sprague-Dawley rats were treated with the renin inhibitor aliskiren, which has high preferential affinity for human and mouse renin, an AT1R blocker, irbesartan, or placebo for 3 wk. Myocardial NADPH oxidase activity and immunostaining for NADPH oxidase subunits and 3-nitrotyrosine were evaluated and remodeling changes assessed by light and transmission electron microscopy. Blood pressure, myocardial NADPH oxidase activity and subunit immunostaining, 3-nitrotyrosine, perivascular fibrosis, mitochondrial content, and markers of activity were significantly increased in Ren2 compared with SD littermates. Both renin inhibition and blockade of the AT1R significantly attenuated cardiac functional and structural alterations, although irbesartan treatment resulted in greater reductions of both blood pressure and markers of oxidative stress. Collectively, these data suggest that both reduce changes driven, in part, by Ang II-mediated increases in NADPH oxidase and, in part, increases in blood pressure.


Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5643-5653 ◽  
Author(s):  
Javad Habibi ◽  
Adam Whaley-Connell ◽  
Melvin R. Hayden ◽  
Vincent G. DeMarco ◽  
Rebecca Schneider ◽  
...  

Emerging evidence indicates that pancreatic tissue expresses all components of the renin-angiotensin system. However, the functional role is not well understood. This investigation examined renin inhibition on pancreas structure/function in the transgenic Ren2 rat harboring the mouse renin gene, a model of tissue renin overexpression. Renin is the rate-limiting step in the generation of angiotensin II (Ang II), which stimulates the generation of reactive oxygen species in a variety of tissues. Overexpression of renin in Ren2 rats results in hypertension, insulin resistance, and cardiovascular and renal damage. Young (6–7 wk old) insulin-resistant male Ren2 and age-matched insulin sensitive Sprague Dawley rats were treated with the renin inhibitor, aliskiren (50 mg/kg·d by ip injection), or placebo for 21 d. At 21 d, the Ren2 demonstrated insulin resistance with increased islet insulin, Ang II, and reduced total insulin receptor substrate (IRS)-1, IRS-2, and Akt immunostaining. There was increased islet nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and subunits (p47phox and Rac1) as well as increased nitrotyrosine immunostaining (each P &lt; 0.05). These functional abnormalities were associated with a disordered islet architecture; increased islet-exocrine interface, pericapillary fibrosis, and structurally abnormal mitochondria and content in endocrine and exocrine pancreas. In vivo treatment with aliskiren normalized systemic insulin resistance and islet insulin, Ang II, NADPH oxidase activity/subunits, and nitrotyrosine and improved total IRS-1 and Akt phosphorylation (each P &lt; 0.05) as well as islet/exocrine structural abnormalities. Collectively, these data suggest that pancreatic functional/structural changes are driven, in part, by tissue renin-angiotensin system-mediated increases in NADPH oxidase and reactive oxygen species generation, abnormalities attenuated with direct renin inhibition.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Madhu V Singh ◽  
Michael Z Cicha ◽  
Mark W Chapleau ◽  
François M Abboud

We tested the role of two distinct adaptors of toll-like receptor (TLR) signaling on Ang II-induced hypertension and cardiac hypertrophy. These TLR adaptors, myeloid differentiation protein 88 (MyD88) and TIR domain-containing adaptor inducing interferon β (TRIF) facilitate distinct inflammatory signaling pathways. In an earlier study, we reported that MyD88-/- mice are protected from cardiac hypertrophy and pro-inflammatory gene expression after myocardial infarction. Our current results with 3 weeks infusion of Ang II (3000 ng/kg/min) vs. saline indicate that in MyD88-/- mice, the pressor response to Ang II and cardiac hypertrophy were increased more than in wild type (WT) mice. In Ang II-infused WT, systolic blood pressure (SBP) peaked at 147 ± 4 mmHg whereas in Ang II-infused MyD88-/- mice SBP reached a peak value of 163 ± 6 mmHg. However, in mice with non-functional TRIF adaptor mutant (Trifmut), SBP did not increase during Ang II infusion and remained similar to the SBP in saline-infused mice (115 ± 3 mmHg). Baseline SBP was not different among WT, MyD88-/- and Trifmut mice. The increase in heart weight to body weight ratio (HW/BW) between saline and Ang II-infused mice was greater in MyD88-/- mice than WT mice (60% increase in MyD88-/- vs. 40% increase in WT), whereas it was less in Trifmut mice (22% increase). Accordingly, expression of several inflammatory genes (Tnfa, Nox4 and Agtr1a) was significantly greater (P< 0.05) in the heart and kidney of Ang II-infused MyD88-/- mice compared with Ang II-infused WT mice, whereas expression of these genes in Trifmut mice was either unchanged or reduced. We conclude that- (1) Ang II-induced hypertension, cardiac hypertrophy and inflammatory gene expression are mediated by activation of a TRIF-dependent pathway, but not by the MyD88-dependent pathways, and (2) Enhanced Ang II effects on SBP and hypertrophy in MyD88-/- mice suggest that MyD88 may serve as a negative regulator of the TRIF pathway in Ang II-induced hypertension. Selective targeting of these adaptor proteins may have significant therapeutic implications.


2007 ◽  
Vol 292 (1) ◽  
pp. C413-C422 ◽  
Author(s):  
Denise C. Fernandes ◽  
João Wosniak ◽  
Luciana A. Pescatore ◽  
Maria A. Bertoline ◽  
Marcel Liberman ◽  
...  

Dihydroethidium (DHE) is a widely used sensitive superoxide (O2•−) probe. However, DHE oxidation yields at least two fluorescent products, 2-hydroxyethidium (EOH), known to be more specific for O2•−, and the less-specific product ethidium. We validated HPLC methods to allow quantification of DHE products in usual vascular experimental situations. Studies in vitro showed that xanthine/xanthine oxidase, and to a lesser degree peroxynitrite/carbon dioxide system led to EOH and ethidium formation. Peroxidase/H2O2 but not H2O2 alone yielded ethidium as the main product. In vascular smooth muscle cells incubated with ANG II (100 nM, 4 h), we showed a 60% increase in EOH/DHE ratio, prevented by PEG-SOD or SOD1 overexpression. We further validated a novel DHE-based NADPH oxidase assay in vascular smooth muscle cell membrane fractions, showing that EOH was uniquely increased after ANG II. This assay was also adapted to a fluorescence microplate reader, providing results in line with HPLC results. In injured artery slices, shown to exhibit increased DHE-derived fluorescence at microscopy, there was ∼1.5- to 2-fold increase in EOH/DHE and ethidium/DHE ratios after injury, and PEG-SOD inhibited only EOH formation. We found that the amount of ethidium product and EOH/ethidium ratios are influenced by factors such as cell density and ambient light. In addition, we indirectly disclosed potential roles of heme groups and peroxidase activity in ethidium generation. Thus HPLC analysis of DHE-derived oxidation products can improve assessment of O2•− production or NADPH oxidase activity in many vascular experimental studies.


2001 ◽  
Vol 2 (1_suppl) ◽  
pp. S154-S161 ◽  
Author(s):  
Djamel Lebeche ◽  
Zhao Bin Kang ◽  
Roger Hajjar

The renin-angiotensin-aldosterone system (RAAS) has been identified as a major contributor to the development of cardiac hypertrophy and the subsequent transition to heart failure. G protein-coupled receptors agonists such as angiotensin II (Ang II), endothelin-1 (ET-1) and phenylephrine (PE) have been implicated in hypertrophic responses in ventricular myocytes through the activation of several families of MAP kinases. In this study we examined the effect of candesartan, an Ang II type 1-(AT1)-receptor antagonist, on cardiac hypertrophy by using cultured neonatal rat cardiomyocytes. Stimulation with Ang II (100 nM), ET-1 (100 nM) or PE (1 µM) induced marked increases in [3H]Leucine incorporation (≥ 50%), compatible with enhanced protein synthesis. The addition of candesartan abrogated the increase in [3H]Leucine incorporation in response not only to Ang II but also to ET-1 and PE. To elucidate the mechanisms involved in this antihypertrophic effect of candesartan, we studied the activation of p38-MAPK, extracellular signal-regulated kinases (ERK1/2) and stress-activated protein kinases (SAPKs). Ang II, ET-1 and PE increased the phosphorylation levels of ERK1/2, p54 SAPK and p46SAPK and p38 in a time-dependent manner. This activation was completely blocked in the case of Ang II by pretreatment with candesartan. ET-1-induced activation of ERKs, SAPKs and p38 was also partially, but significantly, reduced by candesartan. PE-induced activation of SAPKs, but not ERKs and p38, was also reduced by candesartan. These results suggest that the hypertrophic response to ET-1 and PE, along with Ang II, is dependent upon a functioning AT1-receptor and may be mediated by AT 1 activation of the MAP kinases.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Weiguo Li ◽  
Rebecca Ward ◽  
Jingping Sun ◽  
Xinyue Guo ◽  
Adviye Ergul ◽  
...  

While Na+/H+ exchanger isoform 1 inhibitor (NHEi) has been reported to be neuro- and cardio-protective in experimental stroke and myocardial infarction, respectively, clinical use of NHEi for cardioprotection has stalled due to increased cerebrovascular events. NHEi has been demonstrated to increase Hv1 activity and we recently showed that NHEi activates NADPH oxidase and results in amplified superoxide formation in a voltage gated proton channel Hv1-dependent manner. In the CNS, Hv1 is localized primarily to microglia and deletion of Hv1 is neuroprotective after permanent and transient middle cerebral artery occlusion (MCAO). In the current study, we hypothesized that beneficial effect of NHEi after MCAO will be greater in a rat model lacking Hv1 due to loss of a potentially deleterious increase in Hv1 activation and NADPH oxidase activity. The wild type (WT) and Hv1 knockout (KO) rats (n=4-6) were treated with vehicle or NHEi (KR-32568, 2 mg/kg, i.v.) at 30 min after embolic MCAO. The neurological deficiency, infarct size, HT index, and edema ratio were assessed 3 days after surgery (Table). Compare to WT rats, KO rats had smaller infarct, less edema, and better neurological outcomes as previously found in the suture model. NHEi decreased infarct size and edema in both strains. While there was no significant difference in HT between WT and KO rats, the HT was less in WT rats with NHEi. Functional outcomes were significantly improved with NHEi in WT group, while the KO groups had a trend for a better outcomes with NHEi. These data indicate that NHE inhibition in the acute stroke period is similarly effective in both WT and Hv1 KO animals in providing neurovascular protection. Our data do not support the hypothesis that a deleterious increase in Hv1 dependent NADPH oxidase activity limits the beneficial actions of NHEi in embolic stroke. Further studies are needed to explore the underlying mechanism of the interaction between NHEi and the Hv1 channel in ischemic stroke.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Jan Wysocki ◽  
Karla Evora ◽  
Moody Salem ◽  
Christoph Maier ◽  
Minghao Ye ◽  
...  

Many of the pathophysiological effects of angiotensin II (Ang II) are attributed to its stimulation of NADPH oxidases and the consequent production of reactive oxygen species. Female sex has generally lower cardiovascular morbidity and is also less susceptible to kidney injury than males. The basis of these phenomena is not well understood but it is possible that sex-differential regulation of oxidative stress through activation of the RAS and its key effector, Ang II, plays an important contributor role. Here we hypothesized that Ang II levels are higher in male mice and that this is associated with sex-differences in kidney levels of ACE2, an Ang II-degrading enzyme abundantly expressed in the kidney. Parameters of oxidative stress such as, NADPH oxidase activity and malondialdehyde levels (MDA) were measured in kidneys from female and age-matched male C57BL6 mice. At 40 weeks of age, NADPH oxidase activity (p<0.01) and MDA levels (p<0.05) were significantly lower in female than in male mice. Female mice had lower kidney levels of the pro-oxidant peptide, Ang II (0.94±0.19 vs. 1.66±0.17 fmol/mg total protein, p<0.05, respectively). The difference in kidney Ang II levels between females and males was also observed in the face of complete ACE2 genetic deficiency (1.08±0.16 vs 1.97±0.25 fmol/mg total protein, p<0.05, respectively). Consistent with kidney Ang II levels, urinary Ang II levels measured in urines from female WT mice were also significantly lower than in male WT mice (23.6±2.2 vs. 47.9±8.8 pg/mg creatinine, p<0.05) despite significantly higher levels of urinary ACE2 activity in male mice as compared to female mice (7.0±0.5 vs. 3.6±0.3, p<0.01, respectively). Female mice have lower basal levels of kidney oxidative stress than males and exhibit lower levels of kidney and urinary Ang II. The mechanism involved in sex differences in the levels of kidney and urine Ang II does not appear to depend on ACE2.


Sign in / Sign up

Export Citation Format

Share Document