Integer-valued AR processes with Hermite innovations and time-varying parameters: An application to bovine fallen stock surveillance at a local scale

2017 ◽  
Vol 17 (3) ◽  
pp. 172-195 ◽  
Author(s):  
Amanda Fernández-Fontelo ◽  
Sara Fontdecaba ◽  
Anna Alba ◽  
Pedro Puig

In this article we present a new INteger-valued AutoRegressive (INAR) model with the aim of extracting baseline patterns of cattle fallen stock registered over an 5-year period at a local scale. We introduce HINAR as a generalization of the classical Poisson-based INAR models whose innovations follow a Hermite distribution. In order to assess trends and seasonality in these time series, we fit different models with time-dependent parameters by specifying proper functions. Using real world examples, we illustrate how to estimate parameters by maximum likelihood and validate the fitted models. We also show a detailed method to forecast. Our proposed model supposes a good solution for studying discrete time series when the counts have many zeros, low counts and moderate overdispersion. This model has been applied to the analysis of fallen cattle registered at a local scale as part of the development of a veterinary syndromic surveillance system.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
I. Creus-Martí ◽  
A. Moya ◽  
F. J. Santonja

Growing interest in understanding microbiota dynamics has motivated the development of different strategies to model microbiota time series data. However, all of them must tackle the fact that the available data are high-dimensional, posing strong statistical and computational challenges. In order to address this challenge, we propose a Dirichlet autoregressive model with time-varying parameters, which can be directly adapted to explain the effect of groups of taxa, thus reducing the number of parameters estimated by maximum likelihood. A strategy has been implemented which speeds up this estimation. The usefulness of the proposed model is illustrated by application to a case study.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Chang-Sheng Lin ◽  
Dar-Yun Chiang ◽  
Tse-Chuan Tseng

Modal Identification is considered from response data of structural systems under nonstationary ambient vibration. The conventional autoregressive moving average (ARMA) algorithm is applicable to perform modal identification, however, only for stationary-process vibration. The ergodicity postulate which has been conventionally employed for stationary processes is no longer valid in the case of nonstationary analysis. The objective of this paper is therefore to develop modal-identification techniques based on the nonstationary time series for linear systems subjected to nonstationary ambient excitation. Nonstationary ARMA model with time-varying parameters is considered because of its capability of resolving general nonstationary problems. The parameters of moving averaging (MA) model in the nonstationary time-series algorithm are treated as functions of time and may be represented by a linear combination of base functions and therefore can be used to solve the identification problem of time-varying parameters. Numerical simulations confirm the validity of the proposed modal-identification method from nonstationary ambient response data.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
A. Wiliński ◽  
A. Bera ◽  
W. Nowicki ◽  
P. Błaszyński

This paper examines two transactional strategies based on the classifier which opens positions using some rules and closes them using different rules. A rule set contains time-varying parameters that when matched allow making an investment decision. Researches contain the study of variability of these parameters and the relationship between learning period and testing (using the learned parameters). The strategies are evaluated based on the time series of cumulative profit achieved in the test periods. The study was conducted on the most popular currency pair EURUSD (Euro-Dollar) sampled with interval of 1 hour. An important contribution to the theory of algotrading resulting from presented research is specification of the parameter space (quite large, consisting of 11 parameters) that achieves very good results using cross validation.


2015 ◽  
Vol 9 (6) ◽  
pp. 568
Author(s):  
Ahmad Al-Jarrah ◽  
Mohammad Ababneh ◽  
Suleiman Bani Hani ◽  
Khalid Al-Widyan

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 455 ◽  
Author(s):  
Hongjun Guan ◽  
Zongli Dai ◽  
Shuang Guan ◽  
Aiwu Zhao

In time series forecasting, information presentation directly affects prediction efficiency. Most existing time series forecasting models follow logical rules according to the relationships between neighboring states, without considering the inconsistency of fluctuations for a related period. In this paper, we propose a new perspective to study the problem of prediction, in which inconsistency is quantified and regarded as a key characteristic of prediction rules. First, a time series is converted to a fluctuation time series by comparing each of the current data with corresponding previous data. Then, the upward trend of each of fluctuation data is mapped to the truth-membership of a neutrosophic set, while a falsity-membership is used for the downward trend. Information entropy of high-order fluctuation time series is introduced to describe the inconsistency of historical fluctuations and is mapped to the indeterminacy-membership of the neutrosophic set. Finally, an existing similarity measurement method for the neutrosophic set is introduced to find similar states during the forecasting stage. Then, a weighted arithmetic averaging (WAA) aggregation operator is introduced to obtain the forecasting result according to the corresponding similarity. Compared to existing forecasting models, the neutrosophic forecasting model based on information entropy (NFM-IE) can represent both fluctuation trend and fluctuation consistency information. In order to test its performance, we used the proposed model to forecast some realistic time series, such as the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), the Shanghai Stock Exchange Composite Index (SHSECI), and the Hang Seng Index (HSI). The experimental results show that the proposed model can stably predict for different datasets. Simultaneously, comparing the prediction error to other approaches proves that the model has outstanding prediction accuracy and universality.


Sign in / Sign up

Export Citation Format

Share Document