Free vibration analysis of porous beams with gradually varying mechanical properties

Author(s):  
Souhir Zghal ◽  
Dhia Ataoui ◽  
Fakhreddine Dammak

This work is aimed to present analysis on free vibration behavior of porous beams with gradually varying mechanical properties based on a robust finite beam element. The governing equations are developed using a mixed variational formulation considering high-order displacement distribution. A new parabolic distribution of the transverse shear strains is introduced and the zero condition of the shear stresses at the upper and bottom surfaces of the beam is satisfied. The porosity can be spread into the beam with evenly and unevenly distributions. According to a modified power function, the material properties are varying along the thickness direction of the FGM porous beam. The presented results show the effect of gradient index, porosity coefficient and forms, boundary conditions, and geometrical parameters on the vibration of FGM beams. It is found that porous beams can be useful as a passive method for control of vibration for structural components.

2012 ◽  
Vol 2012 ◽  
pp. 1-16
Author(s):  
Liz G. Nallim ◽  
Facundo J. Bellomo ◽  
Ricardo D. Quinteros ◽  
Sergio Oller

This paper presents a variational formulation for the free vibration analysis of unsymmetrically laminated composite plates with elastically restrained edges. The study includes a micromechanics approach that allows starting the study considering each layer as constituted by long unidirectional fibers in a continuous matrix. The Mori-Tanaka method is used to predict the mechanical properties of each lamina as a function of the elastic properties of the components and of the fiber volume fraction. The resulting mechanical properties for each lamina are included in a general Ritz formulation developed to analyze the free vibration response of thick laminated anisotropic plates resting on elastic supports. Comprehensive numerical examples are computed to validate the present method, and the effects of the different mechanical and geometrical parameters on the dynamical behavior of different laminated plates are shown. New results for general unsymmetrical laminates with elastically restrained edges are also presented. The analytical approximate solution obtained in this paper can also be useful as a basis to deal with optimization problems under, for instance, frequency constraints.


Author(s):  
Suman Pal ◽  
Debabrata Das

The present work investigates the free vibration behavior of double-tapered functionally graded beams rotating in thermal environment, using an improved mathematical model. The functional gradation for ceramic–metal compositions, following power-law, is considered to be symmetric with respect to the mid-plane, leading to metal-rich core and ceramic-rich outer surfaces of the beam. The temperature dependence of the material properties are considered using Touloukian model. The nonlinearity in strain–displacement relationships for both the axial and transverse shear strains are considered. Firstly, the governing equations for deformed beam configuration under time-independent centrifugal loading are obtained using minimum total potential energy principle, and the solution is obtained following Ritz method. Then the free vibration problem of the centrifugally deformed beam is formulated employing Lagrange’s principle and considering tangent stiffness of the deformed beam configuration. Coriolis effect is considered in the mathematical model, and the governing equations are transformed to the state-space for obtaining an eigenvalue problem. The results for the first two modes of both chord-wise and flap-wise vibrations are presented in nondimensional plane to show the effects of taperness parameter, root-offset parameter, volume fraction exponent, operating temperature, and functionally graded material composition. The results in comparative form are presented for both temperature-dependent and temperature-independent material properties.


2017 ◽  
Vol 24 (14) ◽  
pp. 3026-3035 ◽  
Author(s):  
Masood Mohandes ◽  
Ahmad Reza Ghasemi ◽  
Mohsen Irani-Rahagi ◽  
Keivan Torabi ◽  
Fathollah Taheri-Behrooz

The free vibration of fiber–metal laminate (FML) thin circular cylindrical shells with different boundary conditions has been studied in this research. Strain–displacement relations have been obtained according to Love’s first approximation shell theory. To satisfy the governing equations of motion, a beam modal function model has been used. The effects of different FML parameters such as material properties lay-up, volume fraction of metal, fiber orientation, and axial and circumferential wavenumbers on the vibration of the shell have been studied. The frequencies of shells have been calculated for carbon/epoxy and glass/epoxy as composites and for aluminum as metal. The results demonstrate that the influences of FML lay-up and volume fraction of composite on the frequencies of the shell are remarkable.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
G. Giunta ◽  
S. Belouettar

This paper addresses a free vibration analysis of thin-walled isotropic beams via higher-order refined theories. The unknown kinematic variables are approximated along the beam cross section as aN-order polynomial expansion, whereNis a free parameter of the formulation. The governing equations are derived via the dynamic version of the Principle of Virtual Displacements and are written in a unified form in terms of a “fundamental nucleus.” This latter does not depend upon order of expansion of the theory over the cross section. Analyses are carried out through a closed form, Navier-type solution. Simply supported, slender, and short beams are investigated. Besides “classical” modes (such as bending and torsion), several higher modes are investigated. Results are assessed toward three-dimensional finite element solutions. The numerical investigation shows that the proposed Unified Formulation yields accurate results as long as the appropriate approximation order is considered. The accuracy of the solution depends upon the geometrical parameters of the beam.


2013 ◽  
Vol 785-786 ◽  
pp. 253-256 ◽  
Author(s):  
Song Xiang ◽  
Ying Tao Chen

In this paper the governing equations of cross-ply symmetric laminated composite plates are derived based on the trigonometric shear deformation theory. Generalized Navier type solutions are obtained to predict the free vibration behavior of cross-ply symmetric laminated composite plates. The analytical solutions of natural frequencies are obtained for thick and moderately thick plates as well as for thin plates, and compared with some available results in other papers. Through numerical examples, the high accuracy of present method for free vibration analysis of cross-ply symmetric laminated composite plates is demonstrated.


2005 ◽  
Vol 128 (2) ◽  
pp. 170-175 ◽  
Author(s):  
C. Mei

In this paper, the differential transformation approach is applied to analyze the free vibration of centrifugally stiffened Timoshenko beam structures. Such structures involve variable coefficients in the governing equations, which in general cannot be solved analytically in closed form. Both the natural frequencies and the mode shapes are obtained using the differential transformation technique. Numerical examples are presented and results are compared with available results in the literature.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Xudong Chen ◽  
Kangsheng Ye

An exact generalised formulation for the free vibration of shells of revolution with general shaped meridians and arbitrary boundary conditions is introduced. Starting from the basic shell theories, the vibration governing equations are obtained in the Hamilton form, from which dynamic stiffness is computed using the ordinary differential equations solver COLSYS. Natural frequencies and modes are determined by employing the Wittrick-Williams (W-W) algorithm in conjunction with the recursive Newton’s method, thus expanding the applications of the abovementioned techniques from one-dimensional skeletal structures to two-dimensional shells of revolution. A solution for solving the number of clamped-end frequenciesJ0in the W-W algorithm is presented for both uniform and nonuniform shell segment members. Based on these theories, a FORTRAN program is written. Numerical examples on circular cylindrical shells, hyperboloidal cooling tower shells, and spherical shells are given, and error analysis is performed. The convergence of the proposed method onJ0is verified, and comparisons with frequencies from existing literature show that the dynamic stiffness method is robust, reliable, and accurate.


Author(s):  
Mehran Sadri ◽  
Davood Younesian ◽  
Ebrahim Esmailzadeh

The nonlinear free vibration of multi-layered nano-scale graphene sheets is studied. Using the von Kármán and nonlocal continuum theories, large amplitude of vibration is included in the analysis as well as the size effect of nano-structure. The SSSS boundary condition is considered for the multi-layered graphene sheet and coupled nonlinear differential equations of motion of layers are taken into account based on Galerkin method. Variational iteration method (VIM) is employed as the solution procedure and nonlinear natural frequencies of the system are analytically determined. Two different geometries are taken into account and the analytical results are compared with frequencies obtained by numerical method. Finally, influence of geometrical parameters and amplitude of vibration on nonlinear frequencies of the system is examined.


2017 ◽  
Vol 29 (5) ◽  
pp. 774-786 ◽  
Author(s):  
M Arefi ◽  
MH Zamani ◽  
M Kiani

This work is devoted to the free vibration nonlocal analysis of an elastic three-layered nanoplate with exponentially graded graphene sheet core and piezomagnetic face-sheets. The rectangular elastic three-layered nanoplate is resting on Pasternak’s foundation. Material properties of the core are supposed to vary along the thickness direction based on the exponential function. The governing equations of motion are derived from Hamilton’s principle based on first-order shear deformation theory. In addition, Eringen’s nonlocal piezo-magneto-elasticity theory is used to consider size effects. The analytical solution is presented to solve seven governing equations of motion using Navier’s solution. Eventually, the natural frequency is scrutinized for different side length ratio, nonlocal parameter, inhomogeneity parameter, and parameters of foundation numerically. The comparison with various references is performed for validation of our analytical results.


Author(s):  
AR Setoodeh ◽  
M Ghorbanzadeh ◽  
P Malekzadeh

In this article, free vibration analysis of elastically supported sandwich beams with functionally graded face sheets subjected to thermal environment is presented. In order to accurately include the transverse shear deformation and the inertia effects, two-dimensional elasticity theory is used to formulate the problem. The layerwise theory in conjunction with the differential quadrature method is employed to discretize the governing equations in the thickness and axial directions, respectively. The material properties of functionally graded face sheets are assumed to be temperature-dependent and graded in the thickness direction according to a power-law distribution. For the purpose of comparison, the problem under consideration is also solved using two-dimensional finite element method and the first-order shear deformation theory. The accuracy, convergence, and versatility of the method are demonstrated by comparing the results with those of the two aforementioned approaches and also with the existing solutions in literature. Eventually, some new numerical results are presented which depict the effects of different material and geometrical parameters on natural frequencies and mode shapes of the beam.


Sign in / Sign up

Export Citation Format

Share Document