scholarly journals Dimming strategies for open office lighting: User experience and acceptance

2018 ◽  
Vol 51 (4) ◽  
pp. 513-529 ◽  
Author(s):  
S Chraibi ◽  
P Creemers ◽  
C Rosenkötter ◽  
EJ van Loenen ◽  
MBC Aries ◽  
...  

Sensor-triggered control strategies can limit the energy consumption of lighting by considering the presence of users in the office and dimming lighting down when it is not needed. In multi-user offices, the application of occupancy-based dimming at room level limits the energy saving potential. However, zone- or desk-based dimming may affect the comfort of co-workers due to its dynamics. This paper reports the assessment by 17 participants (30–50 years of age) of occupancy-based dimming in a mock-up office, using different dimming speeds. Participants consisted of co-workers experiencing changes triggered by others, and actors triggering these light changes. While the participants performed an office-based task, the luminaire above the actors’ desk was dimmed from approximately 550 lx to 350 lx (average horizontal illuminance), and vice versa. The participants evaluated the dimming conditions regarding their noticeability and acceptability. The study showed that the noticeability of light changes due to dimming, increases when fading times become shorter. Dimming with a fading time of at least two seconds was experienced as acceptable by more than 70% of the participants. The results of this experiment provide insights to system behaviour that does not compromise user experience while addressing energy efficient use of electric lighting.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2160 ◽  
Author(s):  
Joowook Kim ◽  
Doosam Song ◽  
Suyeon Kim ◽  
Sohyun Park ◽  
Youngjin Choi ◽  
...  

Building energy savings and occupant thermal comfort are the main issues in building technology. As such, the development of energy-efficient heating, ventilation, and air-conditioning (HVAC) systems and the control strategies of HVAC systems are emerging as important topics in the HVAC industry. Variable refrigerant flow (VRF) systems have efficient energy performance, so the use of VRF systems in buildings is increasing. However, most studies on VRF systems focus on improving mechanical efficiency, with few studies on energy-efficient control while satisfying the thermal comfort of occupants. The goal is to estimate the energy-saving potential of adjusting the temperature set-points and dead-band (range) in VRF air-conditioned building. To do so, we analyzed the influence of control strategies of a VRF system on human thermal comfort and energy consumption using a simulation method. The results showed that energy consumption can be reduced by 25.4% for predicted mean vote (PMV)-based control and 27.0% for the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) comfort range control compared with the typical set-point temperature control of a VRF system. The indoor thermal environments of the analyzed control strategies are controlled in the thermal comfort range, which is based on a PMV at ±0.5. Compared with the typical set-point control, PMV and ASHRAE comfort range-based control reduced the operation time of the compressor in the VRF system.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 81
Author(s):  
Rongjiang Ma ◽  
Shen Yang ◽  
Xianlin Wang ◽  
Xi-Cheng Wang ◽  
Ming Shan ◽  
...  

Air-conditioning systems contribute the most to energy consumption among building equipment. Hence, energy saving for air-conditioning systems would be the essence of reducing building energy consumption. The conventional energy-saving diagnosis method through observation, test, and identification (OTI) has several drawbacks such as time consumption and narrow focus. To overcome these problems, this study proposed a systematic method for energy-saving diagnosis in air-conditioning systems based on data mining. The method mainly includes seven steps: (1) data collection, (2) data preprocessing, (3) recognition of variable-speed equipment, (4) recognition of system operation mode, (5) regression analysis of energy consumption data, (6) constraints analysis of system running, and (7) energy-saving potential analysis. A case study with a complicated air-conditioning system coupled with an ice storage system demonstrated the effectiveness of the proposed method. Compared with the traditional OTI method, the data-mining-based method can provide a more comprehensive analysis of energy-saving potential with less time cost, although it strongly relies on data quality in all steps and lacks flexibility for diagnosing specific equipment for energy-saving potential analysis. The results can deepen the understanding of the operating data characteristics of air-conditioning systems.


2020 ◽  
Vol 10 (12) ◽  
pp. 4336
Author(s):  
Yue Hu ◽  
Per Kvols Heiselberg ◽  
Tine Steen Larsen

A ventilated window system enhanced by phase change material (PCM) has been developed, and its energy-saving potential examined in previous works. In this paper, the ventilation control strategies are further developed, to improve the energy-saving potential of the PCM energy storage. The influence of ventilation airflow rate on the energy-saving potential of the PCM storage is firstly studied based on an EnergyPlus model of a sustainable low energy house located in New York. It shows that in summer, the optimized ventilation airflow rate is 300 m3/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 10.1% compared to using a stand-alone ventilated window, and 12.0% compared to using a standard window. In winter, the optimized ventilation airflow rate is 102 m3/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 26.6% compared to using a stand-alone ventilated window, and 32.8% compared to using a standard window. Based on the optimized ventilation airflow rate, a demand control ventilation strategy, which personalizes the air supply and heat pump setting based on the demand of each room, is proposed and its energy-saving potential examined. The results show that the energy savings of using demand control compared to a constant ventilation airflow rate in the house is 14.7% in summer and 30.4% in winter.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Shanchen Pang ◽  
Kexiang Xu ◽  
Shudong Wang ◽  
Min Wang ◽  
Shuyu Wang

Green computing focuses on the energy consumption to minimize costs and adverse environmental impacts in data centers. Improving the utilization of host computers is one of the main green cloud computing strategies to reduce energy consumption, but the high utilization of the host CPU can affect user experience, reduce the quality of service, and even lead to service-level agreement (SLA) violations. In addition, the ant colony algorithm performs well in finding suitable computing resources in unknown networks. In this paper, an energy-saving virtual machine placement method (UE-ACO) is proposed based on the improved ant colony algorithm to reduce the energy consumption and satisfy users’ experience, which achieves the balance between energy consumption and user experience in data centers. We improve the pheromone and heuristic factors of the traditional ant colony algorithm, which can guarantee that the improved algorithm can jump out of the local optimum and enter the global optimal, avoiding the premature maturity of the algorithm. Experimental results show that compared to the traditional ant colony algorithm, min-min algorithm, and round-robin algorithm, the proposed algorithm UE-ACO can save up to 20%, 24%, and 30% of energy consumption while satisfying user experience.


2016 ◽  
Vol 26 (6) ◽  
pp. 796-812 ◽  
Author(s):  
Heangwoo Lee ◽  
Sang-hoon Gim ◽  
Janghoo Seo ◽  
Yongseong Kim

Various ongoing studies regard light-shelves as one solution to the recent increase in lighting energy consumption. However, in previous light-shelf systems, the direction of incoming light was determined by external conditions, thereby limiting the efficiency of lighting energy saving. The purpose of the present study was to develop a movable light-shelf system with location-awareness technology and verify its performance. In this study, a full-scale testbed was established in order to test the proposed movable light-shelf system with location awareness as well as to verify its energy saving potential. The results were analysed and compared with the performances of previous fixed (Case 1) and movable (Case 2) light-shelf systems without location-awareness technology. The obtained results were as follows. (1) The proposed light-shelf system can respond to external conditions and to the location of the occupant by means of the control axis of the light-shelf module angle through modulation between the control axis of the angle of the previous light-shelf and the reflector of the light-shelf. (2) The proposed light-shelf system provides 90.0% and 86.6%/91.0% energy savings in comparison to Case 1 and Case 2, respectively.


2011 ◽  
Vol 280 ◽  
pp. 71-75
Author(s):  
Zhong Chao Zhao ◽  
Dong Hui Zhang ◽  
Yu Ping Chen

In this paper, the operation mechanism of combined air-conditioning system with temperature and humidity decoupled treatment (CACSTHDT) was presented, and the energy saving potential and economics of CACSTHDT were primarily analyzed through compared with a traditional air-conditioning system. The results indicated that CACSTHDT could save up to 28.64% energy consumption in comparison with a traditional air-conditioning system. The operating cost in one summer only was 71.36% of that cost of traditional air-conditioning system.


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772093577
Author(s):  
Zan Yao ◽  
Ying Wang ◽  
Xuesong Qiu

With the rapid development of data centers in smart cities, how to reduce energy consumption and how to raise economic benefits and network performance are becoming an important research subject. In particular, data center networks do not always run at full load, which leads to significant energy consumption. In this article, we focus on the energy-efficient routing problem in software-defined network–based data center networks. For the scenario of in-band control mode of software-defined data centers, we formulate the dual optimal objective of energy-saving and the load balancing between controllers. In order to cope with a large solution space, we design the deep Q-network-based energy-efficient routing algorithm to find the energy-efficient data paths for traffic flow and control paths for switches. The simulation result reveals that the deep Q-network-based energy-efficient routing algorithm only trains part of the states and gets a good energy-saving effect and load balancing in control plane. Compared with the solver and the CERA heuristic algorithm, energy-saving effect of the deep Q-network-based energy-efficient routing algorithm is almost the same as the heuristic algorithm; however, its calculation time is reduced a lot, especially in a large number of flow scenarios; and it is more flexible to design and resolve the multi-objective optimization problem.


2011 ◽  
Vol 128-129 ◽  
pp. 1217-1221
Author(s):  
Quan Le Liu ◽  
Wei Chen

The quantity of official cars increased with the speed exceeding 20% every year which need much more energy be consumed to meet the official car needs. To investigate the energy saving potential of official cars in China, This paper introduced the strategy method with systemic viewpoint to reduce official cars energy consumption through analyzing the reason of high energy consuming of official cars. The resulted showed that only reduce the quantities and maintenance cost, and decline the displacement and using frequency can realize fuel efficiency of official cars.


2011 ◽  
Vol 243-249 ◽  
pp. 5899-5904 ◽  
Author(s):  
Yu Yun Li ◽  
Kai Guo ◽  
Ran Du ◽  
Hai Cheng Li ◽  
Yun Guo Yang

The paper gives energy consumption indexes of government organization office buildings at the current stage, and then analyses energy-saving potential of office buildings. Further, it discusses building consumption has a correlation between the heating form of air conditioning and personnel density. Finally, the paper presents the energy consumption quota and the formulating method of using energy quota of state organ office buildings at the current stage.


Sign in / Sign up

Export Citation Format

Share Document