Development, characterization and thermal performance of insulating nonwoven fabrics made from textile waste

2018 ◽  
Vol 48 (7) ◽  
pp. 1167-1183 ◽  
Author(s):  
Mohamed EL Wazna ◽  
Ayoub Gounni ◽  
Abdeslam EL Bouari ◽  
Mustapha EL Alami ◽  
Omar Cherkaoui

This paper reports a study on potential applicability of nonwoven samples made from textiles waste in building industries. Four nonwoven fabrics based on acrylic and wool waste were made using the needle punching technique, and tested in terms of thermo-physical properties. Results show that all developed nonwovens have an excellent insulation performance, the thermal conductivity is in the range of 0.03476–0.04877 W/(m·K); these values are comparable with that of conventional insulation materials. The lowest value of the thermal conductivity is observed for the nonwoven made from washed wool Wr (0.03476 W/m.K). In order to evaluate the thermal performance of manufactured nonwoven, a reduced-scale thermally controlled cavity was used; each wall of the cavity is outfitted with one nonwoven. The comparison is based on the outside surface temperature walls. The fixed inside surface temperature was 36 ℃; however, the outside surface temperature was less than 19 ℃. This result is in accordance with the obtained thermal conductivity values and confirms that materials based on textile waste have competitive thermal properties and could be used in building insulation materials.

2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Ayoub Gounni ◽  
Mohamed El Wazna ◽  
Mustapha El Alami ◽  
Abdeslam El Bouari ◽  
Omar Cherkaoui ◽  
...  

The potential applicability of a developed recycled textile material, based on acrylic spinning waste, as thermal insulation is conducted. The prepared acrylic spinning waste (AS) is thermo-physically characterized in terms of density, air permeability, and thermal conductivity. The results show that the density and air permeability are 10.583 kg/m3 and 1100 L/m2/s, respectively. In addition, the thermal conductivity is found to be 38.27 mW/(m K). The developed thermal insulator is then tested in a thermally controlled reduced scale cavity. Two walls of the cavity are outfitted with AS at two different locations and compared to the walls without AS. The comparison is made based on the wall surface temperature and heat flux. A reduction in surface temperature is observed in the walls outfitted with AS, compared to wall without AS. Indeed, compared to a control wall, the peak heat fluxes are reduced by 27.23% and 18.67%, respectively, related to the walls with AS at location 1 and location 2. The obtained results show that the AS is a competitive thermal insulation material and can increase the thermal performance of the building walls.


2014 ◽  
Vol 5 (2) ◽  
pp. 22-28
Author(s):  
S.H. Ibrahim ◽  
Sia W.K. ◽  
A. Baharun ◽  
M.N.M. Nawi ◽  
R. Affandi

 Energy consumption for residential use in Malaysia is keep increasing yearly in order to maintain the internal thermal comfort of the building. Roof insulation material plays a vital role in improving the thermal comforts of the building while reduce the cooling load of the building. Oil palm industry in Malaysia had grown aggressively over the past few decades. Tons of oil palm waste had produced during the process such as empty fruit bunch fiber. Another waste material that available and easy to obtain is paper. Paper is a valuable material that can be recycled. Waste paper comes from different sources such as newspaper, office and printing papers. This study will take advantage of the available resources which could contribute to reduce the environment impact. The aim of this study is to investigate the thermal performance of roof insulation materials using mixture of oil palm fiber and paper pulp with different ratio and thickness. This study found that the thermal performance of the paper pulp is slightly better compare to the oil palm fiber. Thermal conductivity of the particle board reduces around 4.1% by adding the 10% of paper pulp into the total density of the particle board. By adding 75% of paper pulp, the thermal conductivity of the particle board could be reduced to 24.6% compare to the oil palm fiber board under the similar condition. Therefore, from this study, it could be concluded that paper pulp has high potential to be used as a building insulation material.


Author(s):  
K Savitha ◽  
Grace S Annapoorani ◽  
V R Sampath

: The natural fibers prepared from plant waste have parameters like fiber strength, length, and chemical composition which are suitable to fabric and the fibers into nonwoven. The selected plants were identified from their botanical names by comparing the collected samples with those of known identity in the herbarium of a botanical survey in India with their names as Sesbania grandiflora, Mutingia Calabura, and Bauhinia Purpurea. A novel Portable multi-fibre decorticator machine was fabricated and used to extract the fibers from the plant stem and barks. The extracted fibers are done physical characterization and their properties are investigated. The extracted fibers are blended with other natural fibers like jute and flax in appropriate proportions 45:45:10 and nonwoven fabrics were prepared by the needle-punching method. Three and four-layer nonwovens are produced using a needle punching machine. The developed nonwovens are tested using standard apparatus and the effect of natural fibers in areal density, thickness; bulk density, porosity, and air permeability are analyzed. In addition, thermal conductivity and sound absorption behaviour are also investigated. The sound absorption property increases concerning areal density and fabric thickness. The thermal conductivity increased by increasing the fiber layer in the fabric to evaluate its potential as a protective barrier material in non-woven face masks.


2014 ◽  
Vol 699 ◽  
pp. 277-282 ◽  
Author(s):  
Nadzhratul Husna Ahmad Puad ◽  
Mohd Faris Khamidi ◽  
Khairun Azizi Azizli ◽  
Syed Ahmad Farhan

Installation of insulation materials in buildings can reduce the usage of air conditioners by retarding heat flow into the building. Aerogel is one of the best insulation materials with distinctive properties that can replace existing building insulation materials such as fibre glass and polyurethane. However, brittleness of Aerogel makes it difficult to handle and disqualifies its viability as a building insulation material. Reinforcement of Aerogel with binding materials can improve its mechanical and thermal properties to overcome its brittleness. However, only a few studies have been carried out on this area. Furthermore, from the few existing studies, vital information such as thermal conductivity and specific application of the reinforced Aerogel studied were not considered. As an initiative to fill in this research gap, a review on reinforcement of Aerogel is presented.


2008 ◽  
Vol 55-57 ◽  
pp. 405-408 ◽  
Author(s):  
Ching Wen Lou ◽  
Ching Wen Lin ◽  
Chia Chang Lin ◽  
S.J. Li ◽  
I.J. Tsai ◽  
...  

As available energy sources have grown increasingly scarce, people have started paying attention to their energy consumption. Although many methods for power generation are being actively investigated, efficient methods for solving energy problems must be based on reducing energy consumption. Thermal insulation can decrease heat energy loss and conserve energy waste, especially in the construction, transportation and industrial fields. In this study, polyester (PET) hollow fibers were blended with various ratios of low-melting-point PET fibers (10%, 20%, 30%, 40% and 50%). The fibers were blended using opening, carding, laying and needle punching (150 needles/cm2, 225 needles/cm2 and 300 needles/cm2) to prepare PET nonwoven fabrics. The PET nonwoven fabrics were thermally plate pressed (TPP) and air-through bonding (ATB). Thermal conductivity, physical properties and air permeability were investigated to identify the influence of manufacturing parameters on the PET nonwoven fabrics. The experimental results show that needle punching density, TPP and ATB would influence the thermal conductivity of PET nonwoven fabric, because the structure of PET nonwoven fabric was changed. The optimal parameters of PET nonwoven fabric clipped with an aluminum foil was used to evaluate the influence of aluminum foil on thermal conductivity. The PET nonwoven composite in this study can be used in industrial thermal insulation applications.


2017 ◽  
Vol 873 ◽  
pp. 153-157 ◽  
Author(s):  
Jia Jiu Diao ◽  
Xin Qin Liao ◽  
Can Fa Diao

The use of performance, application status and existing problems of organic and inorganic thermal insulation materials, which are commonly used in the external walls of the building, are described in detail in this paper. Organic thermal insulation materials with low thermal conductivity, good thermal insulation performance, but with the flammable, low fire rating, poor safety, then it needing for flame retardant treatment. However, Inorganic thermal insulation materials with flame retardant, high fire rating, good safety performance, but poor thermal insulation properties than the organic insulation materials, so it needs to develop a low thermal conductivity of inorganic insulation materials.In the end, we pointed out that the inorganic insulation materials with low thermal conductivity and excellent comprehensive properties are expected to be the first choice for building thermal insulation materials.


Sign in / Sign up

Export Citation Format

Share Document