Analysis of Thermal Insulation Material on Building Exterior Wall

2017 ◽  
Vol 873 ◽  
pp. 153-157 ◽  
Author(s):  
Jia Jiu Diao ◽  
Xin Qin Liao ◽  
Can Fa Diao

The use of performance, application status and existing problems of organic and inorganic thermal insulation materials, which are commonly used in the external walls of the building, are described in detail in this paper. Organic thermal insulation materials with low thermal conductivity, good thermal insulation performance, but with the flammable, low fire rating, poor safety, then it needing for flame retardant treatment. However, Inorganic thermal insulation materials with flame retardant, high fire rating, good safety performance, but poor thermal insulation properties than the organic insulation materials, so it needs to develop a low thermal conductivity of inorganic insulation materials.In the end, we pointed out that the inorganic insulation materials with low thermal conductivity and excellent comprehensive properties are expected to be the first choice for building thermal insulation materials.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3310
Author(s):  
Santu Golder ◽  
Ramadas Narayanan ◽  
Md. Rashed Hossain ◽  
Mohammad Rofiqul Islam

Reducing building energy consumption is a significant challenge and is one of the most important research areas worldwide. Insulation will help to keep the building’s desired temperature by reducing the heat flow. Additionally, proper insulation can provide an extended period of comfort, leading to reduced building energy requirements. Encapsulated air is the major aspect of most thermal insulation materials. Low thermal conductivity is a good characteristic of thermal insulation materials. Aerogel has low thermal conductivity, so it is suitable for glazing and insulation purposes. This research paper investigates the effectiveness of aerogel as an insulation material in buildings by incorporating a translucent aerogel-glazing system in the window and aerogel insulation in the wall of a building. Experimental investigation of a 10 mm thick aerogel blanket surrounded box was conducted to assess its performance. Additionally, a CFD simulation was conducted, and the results of temperature degradation for the wall showed good agreement with experimental results. Additionally, the CFD simulation of temperature decay was compared between the aerogel-glazed window and argon-glazed window. It was found that the aerogel-glazed window has slower temperature decay compared to the argon-glazed window. The results showed that integrating aerogel in the glazing system and wall insulation in a building has the potential to reduce the building’s energy consumption. Moreover, a numeric simulation was conducted, and showed that the building’s annual energy consumption is reduced by 6% with the use of aerogel insulation compared to fiberglass.


2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3109-3118
Author(s):  
Zifan Zhou ◽  
Guofu Tu ◽  
Feng Xu ◽  
Zhaofeng Song ◽  
Na Li

The key to building energy conservation is how to make the exterior wall have good thermal insulation performance, reduce the heat loss of the building?s peripheral structure, develop new exterior wall insulation materials, and effectively achieve energy saving. In this paper, a new type of composite silicate insulation material was prepared by using fly ash, sepiolite fiber, basalt fiber, and cement as raw materials. According to the analysis of the action of each component of the composite silicate thermal insulation material, the composite silicate thermal insulation material is prepared by selecting different raw material ratios, and the fly ash and sepiolite fibers are analyzed by a thermal conductivity measuring instrument and a hydraulic universal testing machine. The influence of water-cement ratio on the thermal conductivity, tensile strength, and compressive strength of composite silicate insulation materials. Through research, it is found that this composite silicate exterior wall insulation material utilizes some abandoned resources to help the building exterior wall to store thermal energy. The preparation process is simple, the insulation performance is good, the mechanical strength is high, and there is great promotion value and application prospect.


2014 ◽  
Vol 564 ◽  
pp. 315-320 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Mahmoud Tahat

The impact of the thermal conductivity (k-value) change of polystyrene insulation material in building envelope due to changes in temperature on the thermal and energy performance of a typical residential building under hot climate is investigated. Indeed, the thermal and energy performance of buildings depends on the thermal characteristics of the building envelope, and particularly on the thermal resistance of the insulation material used. The thermal insulation material which is determined by its thermal conductivity, which describes the ability of heat to flow cross the material in presence of a gradient of temperature, is the main key to assess the performance of the thermal insulation material. When performing the energy analysis or calculating the cooling load for buildings, we use published values of thermal conductivity of insulation materials, which are normally evaluated at 24°C according to the ASTM standards. In reality, thermal insulation in building is exposed to significant and continuous temperature variations, due essentially to the change of outdoor air temperature and solar radiation. Many types of insulation materials are produced and used in Oman, but not enough information is available to evaluate their performance under the prevailing climatic condition. The main objective of this study is to investigate the relationship between the temperature and thermal conductivity of various densities of polystyrene, which is widely used as building insulation material in Oman. Moreover, the impact of thermal conductivity variation with temperature on the envelope-induced cooling load for a simple building model is discussed. This work will serve as a platform to investigate the effect of the operating temperature on thermal conductivity of other building material insulations, and leads to more accurate assessment of the thermal and energy performance of buildings in Oman.


2014 ◽  
Vol 554 ◽  
pp. 322-326 ◽  
Author(s):  
Wuryanti Sri ◽  
Suhardjo Poertadji ◽  
Bambang Soegijono ◽  
Nasution Henry

The material with low thermal conductivity means it has a high insulating capability for reducing heat transfer. One of materials for insulation is cellulose. This study presents a insulation material of cellulose made from reeds imperata cylindrical type with the extraction process. The extraction of cellulose fibers to form a sheet by adding 3.5% Na-CMC (Sodium Cellulose Carboksil Metyl). The process of forming the sheet uses blender for 30 minutes, 45 minutes, and 60 minutes. Furthermore, each mixture are put into the oven with temperature of 40°C for 36 hours. There are three parameters will be investigated, i.e. thermal conductivity, density and thermal capacity. The results showed that the lowest and the highest of thermal conductivities were 0.22 W/m K and a maximum 0.36 W/m K, respectively.


2014 ◽  
Vol 541-542 ◽  
pp. 141-145
Author(s):  
Bo Liu ◽  
Shou De Wang ◽  
Shuai Yang ◽  
Chen Chen Gong ◽  
Ling Chao Lu

Cement-based foam insulation board is a lightweight thermal insulation and have a characteristic of energy saving. The effects of material constitution on the properties of mechanical properties, dry densityand thermal conductivity for thermal insulation materials. The subject of fast hardening sulphoaluminate cement as cementitious materials, polystyrene particles as a lightweight thermal insulation material, adding a certain amount of water reducer, cellulose ethers, air entraining agent to make thermal insulation materials. The experimental results shows that the appropriate material constitution is following: the cement-bead ratio is 12, the ratio is 0.65, the water-cement ratio is 0.4, the content of water reducer is 0.5%, the content of cellulose ether is 0.4%, the content of the air entraining agent is 0.4% .This mix ratio test of mechanical properties are: flexural strength is 0.72MPa, compressive strength is 1.24MPa, dry density is 375kg/m3, water content is 2.3%, water absorption is 10.8%, softening coefficient is 0.95 and coefficient of thermal conductivity is 0.053 W/ (m K).


2016 ◽  
Vol 4 (28) ◽  
pp. 10801-10805 ◽  
Author(s):  
Fangxin Zou ◽  
Peng Yue ◽  
Xinghua Zheng ◽  
Dawei Tang ◽  
Wenxin Fu ◽  
...  

Novel thiourethane bridged polysilsesquioxane aerogels prepared by a sol–gel process and vacuum drying method exhibit extraordinary mechanical properties and low thermal conductivity.


1970 ◽  
Vol 17 (2) ◽  
pp. 208-212 ◽  
Author(s):  
Jolanta VĖJELIENĖ ◽  
Albinas GAILIUS ◽  
Sigitas VĖJELIS ◽  
Saulius VAITKUS ◽  
Giedrius BALČIŪNAS

The development of new thermal insulation materials needs to evaluate properties and structure of raw material, technological factors that make influence on the thermal conductivity of material. One of the most promising raw materials for production of insulation material is straw. The use of natural fibres in insulation is closely linked to the ecological building sector, where selection of materials is based on factors including recyclable, renewable raw materials and low resource production techniques In current work results of research on structure and thermal conductivity of renewable resources for production thermal insulating materials are presented. Due to the high abundance of renewable resources and a good its structure as raw material for thermal insulation materials barley straw, reeds, cattails and bent grass stalks are used. Macro- and micro structure analysis of these substances is performed. Straw bales of these materials are used for determining thermal conductivity. It was found that the macrostructure has the greatest effect on thermal conductivity of materials. Thermal conductivity of material is determined by the formation of a bale due to the large amount of pores among the stalks of the plant, inside the stalk and inside the stalk wall.http://dx.doi.org/10.5755/j01.ms.17.2.494


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Youyun Li ◽  
Huan Wang ◽  
Li Yang ◽  
Shiqiang Su

A thermal insulation layer is often deposited on the lining structure of tunnels in cold regions to solve the problem of frost damage. When the air humidity in the tunnel becomes excessively high, the thermal insulation material tends to absorb water, leading to significant changes in thermal conductivity. Moreover, the temperature differences between the day and night cycles have been observed to be significant in portal sections of cold region tunnels, which facilitate the freeze-thaw cycle and, consequently, deteriorate the performance of the thermal insulation material. Therefore, the purpose of this study is to determine the changes in the water absorption, thermal conductivity, and microstructure of polyurethane and polyphenolic insulation boards under freeze-thaw conditions. To this end, an indoor water absorption test was conducted for both the insulation boards till they were saturated, which then underwent a freeze-thaw cycle test. It was determined that the water absorption and thermal conductivities of these boards increased linearly with the number of freeze-thaw cycles. In order to explore the change of thermal conductivity of thermal insulation materials after moisture absorption, this study provides insights into the relationship between the thermal conductivities and water contents of tunnel insulation materials under normal and freezing temperatures.


2020 ◽  
Vol 19 (03) ◽  
pp. 1950021
Author(s):  
Shangyan Wen ◽  
Jiayi Zhu ◽  
Qiang Yin ◽  
Yutie Bi ◽  
Hongbo Ren ◽  
...  

The infrared opacifiers loaded Al2O3 aerogel-SiO2 fiber mat composites were fabricated by the sol–gel process. The effects of the content of the TiO2 and SiC particles on thermal insulation performance of the Al2O3 aerogel-SiO2 fiber mat composites were studied. The results showed that the optimum doping content of TiO2 and SiC for Al2O3 aerogel-SiO2 fiber mat composites were 10[Formula: see text]mol.% and 0.5[Formula: see text]mol.%, respectively. The optimum TiO2-Al2O3 aerogel-SiO2 fiber mat composite had the low thermal conductivity of 0.021[Formula: see text]W/(m[Formula: see text][Formula: see text][Formula: see text]K) at 35∘C and 0.031[Formula: see text]W/(m[Formula: see text][Formula: see text][Formula: see text]K) at 600∘C. Meanwhile, the SiC-Al2O3 aerogel-SiO2 fiber mat composite also had the low thermal conductivity of 0.022[Formula: see text]W/(m[Formula: see text][Formula: see text][Formula: see text]K) at 35∘C and 0.025[Formula: see text]W/(m[Formula: see text][Formula: see text][Formula: see text]K) at 600∘C.


Sign in / Sign up

Export Citation Format

Share Document