Review on Reinforcement of Aerogel for Development of Advanced Nano Insulation Material for Application in Sustainable Buildings

2014 ◽  
Vol 699 ◽  
pp. 277-282 ◽  
Author(s):  
Nadzhratul Husna Ahmad Puad ◽  
Mohd Faris Khamidi ◽  
Khairun Azizi Azizli ◽  
Syed Ahmad Farhan

Installation of insulation materials in buildings can reduce the usage of air conditioners by retarding heat flow into the building. Aerogel is one of the best insulation materials with distinctive properties that can replace existing building insulation materials such as fibre glass and polyurethane. However, brittleness of Aerogel makes it difficult to handle and disqualifies its viability as a building insulation material. Reinforcement of Aerogel with binding materials can improve its mechanical and thermal properties to overcome its brittleness. However, only a few studies have been carried out on this area. Furthermore, from the few existing studies, vital information such as thermal conductivity and specific application of the reinforced Aerogel studied were not considered. As an initiative to fill in this research gap, a review on reinforcement of Aerogel is presented.

2014 ◽  
Vol 5 (2) ◽  
pp. 22-28
Author(s):  
S.H. Ibrahim ◽  
Sia W.K. ◽  
A. Baharun ◽  
M.N.M. Nawi ◽  
R. Affandi

 Energy consumption for residential use in Malaysia is keep increasing yearly in order to maintain the internal thermal comfort of the building. Roof insulation material plays a vital role in improving the thermal comforts of the building while reduce the cooling load of the building. Oil palm industry in Malaysia had grown aggressively over the past few decades. Tons of oil palm waste had produced during the process such as empty fruit bunch fiber. Another waste material that available and easy to obtain is paper. Paper is a valuable material that can be recycled. Waste paper comes from different sources such as newspaper, office and printing papers. This study will take advantage of the available resources which could contribute to reduce the environment impact. The aim of this study is to investigate the thermal performance of roof insulation materials using mixture of oil palm fiber and paper pulp with different ratio and thickness. This study found that the thermal performance of the paper pulp is slightly better compare to the oil palm fiber. Thermal conductivity of the particle board reduces around 4.1% by adding the 10% of paper pulp into the total density of the particle board. By adding 75% of paper pulp, the thermal conductivity of the particle board could be reduced to 24.6% compare to the oil palm fiber board under the similar condition. Therefore, from this study, it could be concluded that paper pulp has high potential to be used as a building insulation material.


Buildings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 81
Author(s):  
Cassandra Lafond ◽  
Pierre Blanchet

The energy efficiency of buildings is well documented. However, to improve standards of energy efficiency, the embodied energy of materials included in the envelope is also increasing. Natural fibers like wood and hemp are used to make low environmental impact insulation products. Technical characterizations of five bio-based materials are described and compared to a common, traditional, synthetic-based insulation material, i.e., expanded polystyrene. The study tests the thermal conductivity and the vapor transmission performance, as well as the combustibility of the material. Achieving densities below 60 kg/m3, wood and hemp batt insulation products show thermal conductivity in the same range as expanded polystyrene (0.036 kW/mK). The vapor permeability depends on the geometry of the internal structure of the material. With long fibers are intertwined with interstices, vapor can diffuse and flow through the natural insulation up to three times more than with cellular synthetic (polymer) -based insulation. Having a short ignition times, natural insulation materials are highly combustible. On the other hand, they release a significantly lower amount of smoke and heat during combustion, making them safer than the expanded polystyrene. The behavior of a bio-based building envelopes needs to be assessed to understand the hygrothermal characteristics of these nontraditional materials which are currently being used in building systems.


2011 ◽  
Vol 148-149 ◽  
pp. 116-120
Author(s):  
Jin Lian Qiu ◽  
Zhao Feng Chen ◽  
Jie Ming Zhou ◽  
Jian Wang ◽  
Bin Bin Li ◽  
...  

Due to extremely low thermal conductivity, high modulus, high toughness, light weight and non-combustible property, ultrafine glass wool can be widely used as glass fiber reinforcements in composites, thermal insulation materials, acoustic insulation materials, engineering materials, construction, infrastructure and environmental protection projects and so on. In particular, as a insulation material, glass wool exhibits unique advantages. The predominant process of glass wool is centrifugal blowing process. This paper describes a study of the relationship between the diameter of ultrafine glass fiber and thermal conductivity. The thermal conductivity of ultrafine glass wool decreases with the decrease of average diameter.


Author(s):  
Mayank Pareek ◽  
Rupal Vikas Srivastava ◽  
Sara Behdad

Building insulation is considered as a solution to reduce the energy cost for both residential and commercial buildings. However, determining the best combination of insulation materials that result into the lowest total ownership cost is now becoming a bigger challenge. Various factors influence the efficiency of heat transfer within a room including geometry and size of the room, ambient temperature, heat and sink sources presented inside the building, type of insulation materials, etc. The aim of this paper is to develop an optimization-based decision making tool to help house owners select the best combination of given insulation materials considering all these factors. The purpose of design approach adopted in this paper is to minimize total ownership cost while providing the required heating in the building. The SQP, Quasi-Newton, line-search algorithm was used to obtain the optimized thermal conductivity values for the combination of insulation material to be used in the walls, floor, ceiling, window and the door of a room, along with the width of the air gap to be kept. The results help in deciding what combination of insulation material will achieve the required heating for the house owner while keep the total cost incurred to be minimum.


2014 ◽  
Vol 564 ◽  
pp. 315-320 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Mahmoud Tahat

The impact of the thermal conductivity (k-value) change of polystyrene insulation material in building envelope due to changes in temperature on the thermal and energy performance of a typical residential building under hot climate is investigated. Indeed, the thermal and energy performance of buildings depends on the thermal characteristics of the building envelope, and particularly on the thermal resistance of the insulation material used. The thermal insulation material which is determined by its thermal conductivity, which describes the ability of heat to flow cross the material in presence of a gradient of temperature, is the main key to assess the performance of the thermal insulation material. When performing the energy analysis or calculating the cooling load for buildings, we use published values of thermal conductivity of insulation materials, which are normally evaluated at 24°C according to the ASTM standards. In reality, thermal insulation in building is exposed to significant and continuous temperature variations, due essentially to the change of outdoor air temperature and solar radiation. Many types of insulation materials are produced and used in Oman, but not enough information is available to evaluate their performance under the prevailing climatic condition. The main objective of this study is to investigate the relationship between the temperature and thermal conductivity of various densities of polystyrene, which is widely used as building insulation material in Oman. Moreover, the impact of thermal conductivity variation with temperature on the envelope-induced cooling load for a simple building model is discussed. This work will serve as a platform to investigate the effect of the operating temperature on thermal conductivity of other building material insulations, and leads to more accurate assessment of the thermal and energy performance of buildings in Oman.


2018 ◽  
Vol 16 (3) ◽  
pp. 329-342
Author(s):  
Hanifi Binici ◽  
Orhan Aksogan ◽  
Rifat Resatoglu

In this study, engineering features of insulation materials produced from egg white, perlite, gypsum and fly ash were investigated. Densities, water absorption ratios, ultrasonic velocities and thermal conductivity coefficients of samples were determined. Furthermore, linear absorption coefficient were measured by gamma ray saturation levels at 17.7, 26 and 60 keV energies. Thermal conductivity coefficients of the produced composites were found to be in the range 0.0882- 0.0995 Kcal/mh?C. Egg white decreased the linear absorption coefficients. Unit weights of samples were found to be dependent on their contents. As gypsum rate increased, unit weight also increased. As perlite rate increased thermal conductivity coefficient decreased. As egg white decreased the linear absorption coefficient decreased, also. The most important benefits of these types of materials are their being impermeable and perfectly compatible with the environment. These lighter type materials were/are compatible with Turkey and the Middle East environment. Egg white has been resistant to radiation. Hence, it is highly compatible with the environment. The compressive and flexural strengths of mortars decreased with the use of egg whites in mortar. So, egg white enhances the binding property of samples. In most cases, some organic and/or inorganic additives are used as well, to improve the physical and mechanical properties of mortar, such as egg whites and others. Finally, this study shows that it is possible to produce an insulation material resistant to sound and radiation by using egg white, perlite and fly ash. It is seen that the samples incorporating egg white could be used at hospitals, military and industrial facilities and shelters which are under radiation hazard. Furthermore, this insulation materials will be put to use in industry in Turkey after many experiments have been done on laboratory.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5700
Author(s):  
Maatouk Khoukhi ◽  
Abeer Dar Saleh ◽  
Ahmed Hassan ◽  
Shaimaa Abdelbaqi

Although many advanced insulation materials have been recently developed, very few are eco-friendly and their production requires a substantial amount of energy and complex manufacturing processes. To address this issue, a bio-based thermal insulation material was developed using short- and long-grained puffed rice. A set of experiments was subsequently carried out to identify the best rice type and the optimal range for the most influential parameters (sample amount, temperature, and moisture level). Our findings revealed that short-grained rice exhibited greater puffing ability and was thus adopted in further material optimization experiments. These assessments indicated that the most optimal thermal conductivity of the insulation material and the highest puffing ratio was attained at 12–15% moisture, 260–270 °C temperature, and 15–18 g sample weight. The thermal properties, including thermal conductivity and fire reaction, and thermal performance of samples obtained using these parameters were similar to those of common insulation materials.


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4117-4124
Author(s):  
Xinli Ye ◽  
Zhaofeng Chen ◽  
Sufen Ai ◽  
Junxiong Zhang ◽  
Bin Hou ◽  
...  

A novel structure-controllable reticulated silicon carbide (SiC) skeleton-reinforced silica aerogel composites (SiC/aerogel) were fabricated successfully by template method. Three-dimensional SiC skeletons prepared by different deposition time were prepared via the chemical vapor deposition technology, and then the silica aerogel was induced by the sol–gel process. The test results showed that the mechanical properties increased and thermal conductivities decreased remarkably after impregnating reticulated SiC skeleton with silica aerogel. The SiC/aerogel-24 possessed the highest compressive strength of 0.82 MPa with the thermal conductivity of 0.1597 W/(m·K) at 600℃, while the SiC/aerogel-12 exhibited the lowest thermal conductivity of 0.1244 W/(m·K) and its compressive strength was 0.64 MPa. The present work reported a novel method to manufacture the structure-controllable reticulated SiC aerogel composite which could be used as a high-temperature super-thermal insulation material for the potential applications.


2014 ◽  
Vol 541-542 ◽  
pp. 141-145
Author(s):  
Bo Liu ◽  
Shou De Wang ◽  
Shuai Yang ◽  
Chen Chen Gong ◽  
Ling Chao Lu

Cement-based foam insulation board is a lightweight thermal insulation and have a characteristic of energy saving. The effects of material constitution on the properties of mechanical properties, dry densityand thermal conductivity for thermal insulation materials. The subject of fast hardening sulphoaluminate cement as cementitious materials, polystyrene particles as a lightweight thermal insulation material, adding a certain amount of water reducer, cellulose ethers, air entraining agent to make thermal insulation materials. The experimental results shows that the appropriate material constitution is following: the cement-bead ratio is 12, the ratio is 0.65, the water-cement ratio is 0.4, the content of water reducer is 0.5%, the content of cellulose ether is 0.4%, the content of the air entraining agent is 0.4% .This mix ratio test of mechanical properties are: flexural strength is 0.72MPa, compressive strength is 1.24MPa, dry density is 375kg/m3, water content is 2.3%, water absorption is 10.8%, softening coefficient is 0.95 and coefficient of thermal conductivity is 0.053 W/ (m K).


Sign in / Sign up

Export Citation Format

Share Document