Production and in vitro analysis of catechin incorporated electrospun gelatin/ poly (lactic acid) microfibers for wound dressing applications

2021 ◽  
pp. 152808372110608
Author(s):  
Marziyeh Ranjbar-Mohammadi ◽  
Mohammad Nouri

Nowadays, herbal materials are applied extensively in fibrous structures for application as a wound dressing. In this study, catechin (Cat) as the green tea extract with antibacterial characteristics has been loaded in gelatin (Gel)/poly (lactic acid) (PLA) fibrous structure by double-nozzle electrospinning technique. For this, PLA-Cat from one nozzle and Gel-Cat solution from another were injected, and fabricated Gel/PLA, Gel/PLA-Cat, Gel-Cat/PLA, and Gel-Cat/PLA-Cat hybrid fibers were gathered onto a rotating collector. In order to verify the application of these scaffolds in bio applications, the morphological, chemical, wettability property, and biological features of fibers were analyzed using SEM, contact angle analysis, antibacterial, and cell attachment tests. The viscosity of spinning solutions increased with the addition of Cat to them that resulted in an increase of fibers diameter. Fourier transform infrared spectroscopy highlighted the presence of PLA, Gel, and Cat in the final structure. The results exhibited that the presence of Cat improved the antibacterial activity. Furthermore, cell attachment studies with L929 fibroblast cells demonstrated that incorporation of catchin increased the cell viability without any toxicity.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 957
Author(s):  
Alexa-Maria Croitoru ◽  
Yasin Karaçelebi ◽  
Elif Saatcioglu ◽  
Eray Altan ◽  
Songul Ulag ◽  
...  

The novel controlled and localized delivery of drug molecules to target tissues using an external electric stimulus makes electro-responsive drug delivery systems both feasible and desirable, as well as entailing a reduction in the side effects. Novel micro-scaffold matrices were designed based on poly(lactic acid) (PLA) and graphene oxide (GO) via electrospinning. Quercetin (Q), a natural flavonoid, was loaded into the fiber matrices in order to investigate the potential as a model drug for wound dressing applications. The physico-chemical properties, electrical triggering capacity, antimicrobial assay and biocompatibility were also investigated. The newly fabricated PLA/GO/Q scaffolds showed uniform and smooth surface morphologies, without any beads, and with diameters ranging from 1107 nm (10%PLA/0.1GO/Q) to 1243 nm (10%PLA). The in vitro release tests of Q from the scaffolds showed that Q can be released much faster (up to 8640 times) when an appropriate electric field is applied compared to traditional drug-release approaches. For instance, 10 s of electric stimulation is enough to ensure the full delivery of the loaded Q from the 10%PLA/1%GO/Q microfiber scaffold at both 10 Hz and at 50 Hz. The antimicrobial tests showed the inhibition of bacterial film growth. Certainly, these materials could be loaded with more potent agents for anti-cancer, anti-infection, and anti-osteoporotic therapies. The L929 fibroblast cells cultured on these scaffolds were distributed homogeneously on the scaffolds, and the highest viability value of 82.3% was obtained for the 10%PLA/0.5%GO/Q microfiber scaffold. Moreover, the addition of Q in the PLA/GO matrix stimulated the production of IL-6 at 24 h, which could be linked to an acute inflammatory response in the exposed fibroblast cells, as a potential effect of wound healing. As a general conclusion, these results demonstrate the possibility of developing graphene oxide-based supports for the electrically triggered delivery of biological active agents, with the delivery rate being externally controlled in order to ensure personalized release.


2011 ◽  
Vol 197-198 ◽  
pp. 164-167 ◽  
Author(s):  
Zheng Guo ◽  
Jin Jing Chen ◽  
Pei Hua Zhang

A tubal knitted scaffold fabricated from poly(lactic acid) (PLA) yarns was given in this work. The performance of the scaffold during degradation in vitro and the morphology of the scaffold with cells (monkey dermal fibroblasts) were examined. The scaffold fabricated from poly(glycolic acid) (PGA) yarns was manufactured as the control. Results showed that the PLA scaffold could keep much more tensile strength during degradation in vitro, compared with the PGA scaffold. However, cell attachment and proliferation on the PGA scaffold were better than on the PLA scaffold.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Seung Kyun Yoon ◽  
Jin Ho Yang ◽  
Hyun Tae Lim ◽  
Young-Wook Chang ◽  
Muhammad Ayyoob ◽  
...  

Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA–PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.


2012 ◽  
Vol 44 ◽  
pp. 866-868 ◽  
Author(s):  
A.P.S. Immich ◽  
M. Lis ◽  
L.H. Catalani ◽  
R.L. Boemo ◽  
J.A. Tornero

2006 ◽  
Vol 103 (3) ◽  
pp. 2006-2012 ◽  
Author(s):  
Bhuvanesh Gupta ◽  
Nilesh Revagade ◽  
Jöns Hilborn

2021 ◽  
pp. 088532822110464
Author(s):  
Alexandre F Júnior ◽  
Charlene A Ribeiro ◽  
Maria E Leyva ◽  
Paulo S Marques ◽  
Carlos R J Soares ◽  
...  

The aim of this work was to study the biophysical properties of the chitosan-grafted poly(lactic acid) (CH-g-PLA) nanofibers loaded with silver nanoparticles (AgNPs) and chondroitin-4-sulfate (C4S). The electrospun CH-g-PLA:AgNP:C4S nanofibers were manufactured using the electrospinning technique. The microstructure of the CH-g-PLA:AgNP:C4S nanofibers was investigated by proton nuclear magnetic resonance (1H-NMR), scanning electron microscopy (SEM), UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and Fourier transform infrared (ATR-FTIR) spectroscopy. ATR-FTIR and 1H-NMR confirm the CH grafting successfully by PLA with a substitution degree of 33.4%. The SEM measurement results indicated apparently smooth nanofibers having a diameter range of 340 ± 18 nm with porosity of 89 ± 3.08% and an average pore area of 0.27 μm2. UV-Vis and XRD suggest that silver nanoparticles with the size distribution of 30 nm were successfully incorporated into the electrospun nanofibers. The water contact angle of 12.8 ± 2.7° reveals the hydrophilic nature of the CH-g-PLA:AgNP:C4S nanofibers has been improved by C4S. The electrospun CH-g-PLA:AgNP:C4S nanofibers are found to release ions Ag+ at a concentration level capable of rendering an antimicrobial efficacy. Gram-positive bacteria ( S.aureus) were more sensitive to CH-g-PLA:AgNP:C4S than Gram-negative bacteria ( E. coli). The electrospun CH-g-PLA:AgNP:C4S nanofibers exhibited no cytotoxicity to the L-929 fibroblast cells, suggesting cytocompatibility. Fluorescence microscopy demonstrated that C4S promotes the adhesion and proliferation of fibroblast cells onto electrospun CH-g-PLA:AgNP:C4S nanofibers.


2020 ◽  
Vol 30 (3) ◽  
pp. 101003
Author(s):  
E.H. Endo ◽  
R.Y. Makimori ◽  
M.V.P. Companhoni ◽  
T. Ueda-Nakamura ◽  
C.V. Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document