scholarly journals A local algorithm to approximate the global clustering of streams generated in ubiquitous sensor networks

2018 ◽  
Vol 14 (10) ◽  
pp. 155014771880823 ◽  
Author(s):  
Pedro Pereira Rodrigues ◽  
João Araújo ◽  
João Gama ◽  
Luís Lopes

In ubiquitous streaming data sources, such as sensor networks, clustering nodes by the data they produce gives insights on the phenomenon being monitored. However, centralized algorithms force communication and storage requirements to grow unbounded. This article presents L2GClust, an algorithm to compute local clusterings at each node as an approximation of the global clustering. L2GClust performs local clustering of the sources based on the moving average of each node’s data over time: the moving average is approximated using memory-less statistics; clustering is based on the furthest-point algorithm applied to the centroids computed by the node’s direct neighbors. Evaluation is performed both on synthetic and real sensor data, using a state-of-the-art sensor network simulator and measuring sensitivity to network size, number of clusters, cluster overlapping, and communication incompleteness. A high level of agreement was found between local and global clusterings, with special emphasis on separability agreement, while an overall robustness to incomplete communications emerged. Communication reduction was also theoretically shown, with communication ratios empirically evaluated for large networks. L2GClust is able to keep a good approximation of the global clustering, using less communication than a centralized alternative, supporting the recommendation to use local algorithms for distributed clustering of streaming data sources.

Author(s):  
Yuandong Liu ◽  
Zhihua Zhang ◽  
Lee D. Han ◽  
Candace Brakewood

Traffic queues, especially queues caused by non-recurrent events such as incidents, are unexpected to high-speed drivers approaching the end of queue (EOQ) and become safety concerns. Though the topic has been extensively studied, the identification of EOQ has been limited by the spatial-temporal resolution of traditional data sources. This study explores the potential of location-based crowdsourced data, specifically Waze user reports. It presents a dynamic clustering algorithm that can group the location-based reports in real time and identify the spatial-temporal extent of congestion as well as the EOQ. The algorithm is a spatial-temporal extension of the density-based spatial clustering of applications with noise (DBSCAN) algorithm for real-time streaming data with an adaptive threshold selection procedure. The proposed method was tested with 34 traffic congestion cases in the Knoxville,Tennessee area of the United States. It is demonstrated that the algorithm can effectively detect spatial-temporal extent of congestion based on Waze report clusters and identify EOQ in real-time. The Waze report-based detection are compared to the detection based on roadside sensor data. The results are promising: The EOQ identification time of Waze is similar to the EOQ detection time of traffic sensor data, with only 1.1 min difference on average. In addition, Waze generates 1.9 EOQ detection points every mile, compared to 1.8 detection points generated by traffic sensor data, suggesting the two data sources are comparable in respect of reporting frequency. The results indicate that Waze is a valuable complementary source for EOQ detection where no traffic sensors are installed.


Author(s):  
Neetika Jain ◽  
Sangeeta Mittal

Background: Real Time Wireless Sensor Networks (RT-WSN) have hard real time packet delivery requirements. Due to resource constraints of sensors, these networks need to trade-off energy and latency. Objective: In this paper, a routing protocol for RT-WSN named “SPREAD” has been proposed. The underlying idea is to reserve laxity by assuming tighter packet deadline than actual. This reserved laxity is used when no deadline-meeting next hop is available. Objective: As a result, if due to repeated transmissions, energy of nodes on shortest path is drained out, then time is still left to route the packet dynamically through other path without missing the deadline. Results: Congestion scenarios have been addressed by dynamically assessing 1-hop delays and avoiding traffic on congested paths. Conclusion: Through extensive simulations in Network Simulator NS2, it has been observed that SPREAD algorithm not only significantly reduces miss ratio as compared to other similar protocols but also keeps energy consumption under control. It also shows more resilience towards high data rate and tight deadlines than existing popular protocols.


Author(s):  
Cong Gao ◽  
Ping Yang ◽  
Yanping Chen ◽  
Zhongmin Wang ◽  
Yue Wang

AbstractWith large deployment of wireless sensor networks, anomaly detection for sensor data is becoming increasingly important in various fields. As a vital data form of sensor data, time series has three main types of anomaly: point anomaly, pattern anomaly, and sequence anomaly. In production environments, the analysis of pattern anomaly is the most rewarding one. However, the traditional processing model cloud computing is crippled in front of large amount of widely distributed data. This paper presents an edge-cloud collaboration architecture for pattern anomaly detection of time series. A task migration algorithm is developed to alleviate the problem of backlogged detection tasks at edge node. Besides, the detection tasks related to long-term correlation and short-term correlation in time series are allocated to cloud and edge node, respectively. A multi-dimensional feature representation scheme is devised to conduct efficient dimension reduction. Two key components of the feature representation trend identification and feature point extraction are elaborated. Based on the result of feature representation, pattern anomaly detection is performed with an improved kernel density estimation method. Finally, extensive experiments are conducted with synthetic data sets and real-world data sets.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Mihui Kim ◽  
Mihir Asthana ◽  
Siddhartha Bhargava ◽  
Kartik Krishnan Iyyer ◽  
Rohan Tangadpalliwar ◽  
...  

The increasing number of Internet of Things (IoT) devices with various sensors has resulted in a focus on Cloud-based sensing-as-a-service (CSaaS) as a new value-added service, for example, providing temperature-sensing data via a cloud computing system. However, the industry encounters various challenges in the dynamic provisioning of on-demand CSaaS on diverse sensor networks. We require a system that will provide users with standardized access to various sensor networks and a level of abstraction that hides the underlying complexity. In this study, we aim to develop a cloud-based solution to address the challenges mentioned earlier. Our solution, SenseCloud, includes asensor virtualizationmechanism that interfaces with diverse sensor networks, amultitenancymechanism that grants multiple users access to virtualized sensor networks while sharing the same underlying infrastructure, and adynamic provisioningmechanism to allow the users to leverage the vast pool of resources on demand and on a pay-per-use basis. We implement a prototype of SenseCloud by using real sensors and verify the feasibility of our system and its performance. SenseCloud bridges the gap between sensor providers and sensor data consumers who wish to utilize sensor data.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1782
Author(s):  
Yulong Deng ◽  
Chong Han ◽  
Jian Guo ◽  
Lijuan Sun

Data missing is a common problem in wireless sensor networks. Currently, to ensure the performance of data processing, making imputation for the missing data is the most common method before getting into sensor data analysis. In this paper, the temporal and spatial nearest neighbor values-based missing data imputation (TSNN), a new imputation based on the temporal and spatial nearest neighbor values has been presented. First, four nearest neighbor values have been defined from the perspective of space and time dimensions as well as the geometrical and data distances, which are the bases of the algorithm that help to exploit the correlations among sensor data on the nodes with the regression tool. Next, the algorithm has been elaborated as well as two parameters, the best number of neighbors and spatial–temporal coefficient. Finally, the algorithm has been tested on an indoor and an outdoor wireless sensor network, and the result shows that TSNN is able to improve the accuracy of imputation and increase the number of cases that can be imputed effectively.


2018 ◽  
Vol 7 (2.26) ◽  
pp. 25
Author(s):  
E Ramya ◽  
R Gobinath

Data mining plays an important role in analysis of data in modern sensor networks. A sensor network is greatly constrained by the various challenges facing a modern Wireless Sensor Network. This survey paper focuses on basic idea about the algorithms and measurements taken by the Researchers in the area of Wireless Sensor Network with Health Care. This survey also catego-ries various constraints in Wireless Body Area Sensor Networks data and finds the best suitable techniques for analysing the Sensor Data. Due to resource constraints and dynamic topology, the quality of service is facing a challenging issue in Wireless Sensor Networks. In this paper, we review the quality of service parameters with respect to protocols, algorithms and Simulations. 


Sign in / Sign up

Export Citation Format

Share Document