Visualization of Fluoroscopic Imaging in Orthopedic Surgery: Head-Mounted Display vs Conventional Monitor

2021 ◽  
pp. 155335062098797
Author(s):  
Alex A. Johnson ◽  
Jay S. Reidler ◽  
William Speier ◽  
Bernhard Fuerst ◽  
Jiangxia Wang ◽  
...  

Purpose. See-through head-mounted displays (HMDs) can be used to view fluoroscopic imaging during orthopedic surgical procedures. The goals of this study were to determine whether HMDs reduce procedure time, number of fluoroscopic images required, or number of head turns by the surgeon compared with standard monitors. Methods. Sixteen orthopedic surgery residents each performed fluoroscopy-guided drilling of 8 holes for placement of tibial nail distal interlocking screws in an anatomical model, with 4 holes drilled while using HMD and 4 holes drilled while using a standard monitor. Procedure time, number of fluoroscopic images needed, and number of head turns by the resident during the procedure were compared between the 2 modalities. Statistical significance was set at P < .05. Results. Mean (SD) procedure time did not differ significantly between attempts using the standard monitor (55 [37] seconds) vs the HMD (56 [31] seconds) ( P = .73). Neither did mean number of fluoroscopic images differ significantly between attempts using the standard monitor vs the HMD (9 [5] images for each) ( P = .84). Residents turned their heads significantly more times when using the standard monitor (9 [5] times) vs the HMD (1 [2] times) ( P < .001). Conclusions. Head-mounted displays lessened the need for residents to turn their heads away from the surgical field while drilling holes for tibial nail distal interlocking screws in an anatomical model; however, there was no difference in terms of procedure time or number of fluoroscopic images needed using the HMD compared with the standard monitor.

Author(s):  
F. Boehm ◽  
P. J. Schuler ◽  
R. Riepl ◽  
L. Schild ◽  
T. K. Hoffmann ◽  
...  

AbstractMicrovascular procedures require visual magnification of the surgical field, e.g. by a microscope. This can be accompanied by an unergonomic posture with musculoskeletal pain or long-term degenerative changes as the eye is bound to the ocular throughout the whole procedure. The presented study describes the advantages and drawbacks of a 3D exoscope camera system. The RoboticScope®-system (BHS Technologies®, Innsbruck, Austria) features a high-resolution 3D-camera that is placed over the surgical field and a head-mounted-display (HMD) that the camera pictures are transferred to. A motion sensor in the HMD allows for hands-free change of the exoscope position via head movements. For general evaluation of the system functions coronary artery anastomoses of ex-vivo pig hearts were performed. Second, the system was evaluated for anastomosis of a radial-forearm-free-flap in a clinical setting/in vivo. The system positioning was possible entirely hands-free using head movements. Camera control was intuitive; visualization of the operation site was adequate and independent from head or body position. Besides technical instructions of the providing company, there was no special surgical training of the surgeons or involved staff upfront performing the procedures necessary. An ergonomic assessment questionnaire showed a favorable ergonomic position in comparison to surgery with a microscope. The outcome of the operated patient was good. There were no intra- or postoperative complications. The exoscope facilitates a change of head and body position without losing focus of the operation site and an ergonomic working position. Repeated applications have to clarify if the system benefits in clinical routine.


2006 ◽  
Vol 5 (3) ◽  
pp. 33-39 ◽  
Author(s):  
Seokhee Jeon ◽  
Hyeongseop Shim ◽  
Gerard J. Kim

In this paper, we have investigated the comparative usability among three different viewing configurations of augmented reality (AR) system that uses a desktop monitor instead of a head mounted display. In many cases, due to operational or cost reasons, the use of head mounted displays may not be viable. Such a configuration is bound to cause usability problems because of the mismatch in the user's proprioception, scale, hand eye coordination, and the reduced 3D depth perception. We asked a pool of subjects to carry out an object manipulation task in three different desktop AR set ups. We measured the subject's task performance and surveyed for the perceived usability and preference. Our results indicated that placing a fixed camera in the back of the user was the best option for convenience and attaching a camera on the user�s head for task performance. The results should provide a valuable guide for designing desktop augmented reality systems without head mounted displays


Author(s):  
Thiago D'Angelo ◽  
Saul Emanuel Delabrida Silva ◽  
Ricardo A. R. Oliveira ◽  
Antonio A. F. Loureiro

Virtual Reality and Augmented Reality Head-Mounted Displays (HMDs) have been emerging in the last years. These technologies sound like the new hot topic for the next years. Head-Mounted Displays have been developed for many different purposes. Users have the opportunity to enjoy these technologies for entertainment, work tasks, and many other daily activities. Despite the recent release of many AR and VR HMDs, two major problems are hindering the AR HMDs from reaching the mainstream market: the extremely high costs and the user experience issues. In order to minimize these problems, we have developed an AR HMD prototype based on a smartphone and on other low-cost materials. The prototype is capable of running Eye Tracking algorithms, which can be used to improve user interaction and user experience. To assess our AR HMD prototype, we choose a state-of-the-art method for eye center location found in the literature and evaluate its real-time performance in different development boards.


2013 ◽  
Vol 22 (2) ◽  
pp. 171-190 ◽  
Author(s):  
Michele Fiorentino ◽  
Saverio Debernardis ◽  
Antonio E. Uva ◽  
Giuseppe Monno

The application of augmented reality in industrial environments requires an effective visualization of text on a see-through head-mounted display (HMD). The main contribution of this work is an empirical study of text styles as viewed through a monocular optical see-through display on three real workshop backgrounds, examining four colors and four different text styles. We ran 2,520 test trials with 14 participants using a mixed design and evaluated completion time and error rates. We found that both presentation mode and background influence the readability of text, but there is no interaction effect between these two variables. Another interesting aspect is that the presentation mode differentially influences completion time and error rate. The present study allows us to draw some guidelines for an effective use of AR text visualization in industrial environments. We suggest maximum contrast when reading time is important, and the use of colors to reduce errors. We also recommend a colored billboard with transparent text where colors have a specific meaning.


Author(s):  
David E. Kancler ◽  
Laurie L. Quill

This study investigates the effects of ocular dominance when maintenance procedures are presented on a monocular, occluding head-mounted display (HMD). While previous research has not revealed significant effects associated with ocular dominance and the use of a monocular, occluding HMD, most of this research has occurred in the cockpit environment. By nature, this setting involves continually changing (or dynamic) environmental information, such as target location or altitude. By contrast, the aircraft maintenance environment is static; the technician is not required to process dynamic environmental information. As the Air Force studies the feasibility of presenting maintenance procedures on HMDs, research efforts must thoroughly address questions pertaining to the use of these devices, such as potential effects of ocular dominance. The current study addresses the effect of ocular dominance on performance times, subjective workload ratings, self reports, and preference rankings. Consistent with previous research, ocular dominance did not have a significant effect on any of the dependent measures. However, order of presentation (dominant eye before non-dominant eye vs. dominant eye after non-dominant eye) did provide some differences in performance times and workload scores. Explanations for these differences are discussed.


2007 ◽  
Vol 22 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Sylvain Palmer ◽  
Andrew Mahar ◽  
Richard Oka

Object Biomechanical testing and fluoroscopic imaging were used to study an extension-limiting device that has been developed to support and cushion the facet complex. It is a titanium screw–based system with a polycarbonate-urethane bumper that lies against the inferior articular process and is anchored into the pedicle by the screw for posterior dynamic stabilization (PDS). Methods Six human cadaveric spines were dissected from L-2 to L-5, leaving all ligamentous structures intact. The intact spines were first tested in flexion and extension, lateral bending, and axial rotation at ±7.5 Nm. The PDS devices were inserted at L3–4 and testing was repeated. Fluoroscopic analysis of posterior disc height and foraminal area of the intact and instrumented spines while loaded was performed. All test data were compared using a one-way analysis of variance (statistical significance was set at p < 0.05). Instrumented spines had 62% less motion during flexion and 49% less motion during extension compared with the intact spines. Neuroimaging analysis showed 84% less compression of the posterior disc of the instrumented spines during extension, and no difference during flexion compared with intact spines. After instrumentation was affixed, the foraminal area was 36% larger than in intact spines during extension and 9% larger during flexion. During axial loading, compression of the posterior disc was decreased by 70%, and analysis showed 10% decompression prior to loading just from implanting the devices. Conclusions The PDS system has the benefit of being a completely percutaneous one, which can be used at all levels of the lumbar spine, including S-1. The PDS system limits spinal motion, enlarges the foramina, and achieves discal decompression.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6623
Author(s):  
Luisa Lauer ◽  
Kristin Altmeyer ◽  
Sarah Malone ◽  
Michael Barz ◽  
Roland Brünken ◽  
...  

Augmenting reality via head-mounted displays (HMD-AR) is an emerging technology in education. The interactivity provided by HMD-AR devices is particularly promising for learning, but presents a challenge to human activity recognition, especially with children. Recent technological advances regarding speech and gesture recognition concerning Microsoft’s HoloLens 2 may address this prevailing issue. In a within-subjects study with 47 elementary school children (2nd to 6th grade), we examined the usability of the HoloLens 2 using a standardized tutorial on multimodal interaction in AR. The overall system usability was rated “good”. However, several behavioral metrics indicated that specific interaction modes differed in their efficiency. The results are of major importance for the development of learning applications in HMD-AR as they partially deviate from previous findings. In particular, the well-functioning recognition of children’s voice commands that we observed represents a novelty. Furthermore, we found different interaction preferences in HMD-AR among the children. We also found the use of HMD-AR to have a positive effect on children’s activity-related achievement emotions. Overall, our findings can serve as a basis for determining general requirements, possibilities, and limitations of the implementation of educational HMD-AR environments in elementary school classrooms.


Author(s):  
Eric G. Hintz ◽  
Michael D. Jones ◽  
M. Jeannette Lawler ◽  
Nathan Bench ◽  
Fred Mangrubang

Accommodating the planetarium experience to members of the deaf or hard-of-hearing community has often created situations that are either disruptive to the rest of the audience or provide an insufficient accommodation. To address this issue, we examined the use of head-mounted displays to deliver an American Sign Language sound track to learners in the planetarium Here we present results from a feasibility study to see if an ASL sound track delivered through a head-mount display can be understood by deaf junior to senior high aged students who are fluent in ASL. We examined the adoption of ASL classifiers that were used as part of the sound track for a full dome planetarium show. We found that about 90% of all students in our sample adopted at least one classifier from the show. In addition, those who viewed the sound track in a head-mounted display did at least as well as those who saw the sound track projected directly on the dome. These results suggest that ASL transmitted through head-mounted displays is a promising method to help improve learning for those whose primary language is ASL and merits further investigation.


2020 ◽  
Vol 10 (7) ◽  
pp. 2248
Author(s):  
Syed Hammad Hussain Shah ◽  
Kyungjin Han ◽  
Jong Weon Lee

We propose a novel authoring and viewing system for generating multiple experiences with a single 360° video and efficiently transferring these experiences to the user. An immersive video contains much more interesting information within the 360° environment than normal videos. There can be multiple interesting areas within a 360° frame at the same time. Due to the narrow field of view in virtual reality head-mounted displays, a user can only view a limited area of a 360° video. Hence, our system is aimed at generating multiple experiences based on interesting information in different regions of a 360° video and efficient transferring of these experiences to prospective users. The proposed system generates experiences by using two approaches: (1) Recording of the user’s experience when the user watches a panoramic video using a virtual reality head-mounted display, and (2) tracking of an arbitrary interesting object in a 360° video selected by the user. For tracking of an arbitrary interesting object, we have developed a pipeline around an existing simple object tracker to adapt it for 360° videos. This tracking algorithm was performed in real time on a CPU with high precision. Moreover, to the best of our knowledge, there is no such existing system that can generate a variety of different experiences from a single 360° video and enable the viewer to watch one 360° visual content from various interesting perspectives in immersive virtual reality. Furthermore, we have provided an adaptive focus assistance technique for efficient transferring of the generated experiences to other users in virtual reality. In this study, technical evaluation of the system along with a detailed user study has been performed to assess the system’s application. Findings from evaluation of the system showed that a single 360° multimedia content has the capability of generating multiple experiences and transfers among users. Moreover, sharing of the 360° experiences enabled viewers to watch multiple interesting contents with less effort.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4956
Author(s):  
Jose Llanes-Jurado ◽  
Javier Marín-Morales ◽  
Jaime Guixeres ◽  
Mariano Alcañiz

Fixation identification is an essential task in the extraction of relevant information from gaze patterns; various algorithms are used in the identification process. However, the thresholds used in the algorithms greatly affect their sensitivity. Moreover, the application of these algorithm to eye-tracking technologies integrated into head-mounted displays, where the subject’s head position is unrestricted, is still an open issue. Therefore, the adaptation of eye-tracking algorithms and their thresholds to immersive virtual reality frameworks needs to be validated. This study presents the development of a dispersion-threshold identification algorithm applied to data obtained from an eye-tracking system integrated into a head-mounted display. Rules-based criteria are proposed to calibrate the thresholds of the algorithm through different features, such as number of fixations and the percentage of points which belong to a fixation. The results show that distance-dispersion thresholds between 1–1.6° and time windows between 0.25–0.4 s are the acceptable range parameters, with 1° and 0.25 s being the optimum. The work presents a calibrated algorithm to be applied in future experiments with eye-tracking integrated into head-mounted displays and guidelines for calibrating fixation identification algorithms


Sign in / Sign up

Export Citation Format

Share Document