scholarly journals Intraprocedural Artificial Intelligence for Colorectal Cancer Detection and Characterisation in Endoscopy and Laparoscopy

2021 ◽  
pp. 155335062199776 ◽  
Author(s):  
Niall P Hardy ◽  
Pól Mac Aonghusa ◽  
Peter M Neary ◽  
Ronan A Cahill

In this article, we provide an evidence-based primer of current tools and evolving concepts in the area of intraprocedural artificial intelligence (AI) methods in colonoscopy and laparoscopy as a ‘procedure companion’, with specific focus on colorectal cancer recognition and characterisation. These interventions are both likely beneficiaries from an impending rapid phase in technical and technological evolution. The domains where AI is most likely to impact are explored as well as the methodological pitfalls pertaining to AI methods. Such issues include the need for large volumes of data to train AI systems, questions surrounding false positive rates, explainability and interpretability as well as recent concerns surrounding instabilities in current deep learning (DL) models. The area of biophysics-inspired models, a potential remedy to some of these pitfalls, is explored as it could allow our understanding of the fundamental physiological differences between tissue types to be exploited in real time with the help of computer-assisted interpretation. Right now, such models can include data collected from dynamic fluorescence imaging in surgery to characterise lesions by their biology reducing the number of cases needed to build a reliable and interpretable classification system. Furthermore, instead of focussing on image-by-image analysis, such systems could analyse in a continuous fashion, more akin to how we view procedures in real life and make decisions in a manner more comparable to human decision-making. Synergistical approaches can ensure AI methods usefully embed within practice thus safeguarding against collapse of this exciting field of investigation as another ‘boom and bust’ cycle of AI endeavour.

2021 ◽  
Vol 28 (3) ◽  
pp. 1581-1607
Author(s):  
Athanasia Mitsala ◽  
Christos Tsalikidis ◽  
Michail Pitiakoudis ◽  
Constantinos Simopoulos ◽  
Alexandra K. Tsaroucha

The development of artificial intelligence (AI) algorithms has permeated the medical field with great success. The widespread use of AI technology in diagnosing and treating several types of cancer, especially colorectal cancer (CRC), is now attracting substantial attention. CRC, which represents the third most commonly diagnosed malignancy in both men and women, is considered a leading cause of cancer-related deaths globally. Our review herein aims to provide in-depth knowledge and analysis of the AI applications in CRC screening, diagnosis, and treatment based on current literature. We also explore the role of recent advances in AI systems regarding medical diagnosis and therapy, with several promising results. CRC is a highly preventable disease, and AI-assisted techniques in routine screening represent a pivotal step in declining incidence rates of this malignancy. So far, computer-aided detection and characterization systems have been developed to increase the detection rate of adenomas. Furthermore, CRC treatment enters a new era with robotic surgery and novel computer-assisted drug delivery techniques. At the same time, healthcare is rapidly moving toward precision or personalized medicine. Machine learning models have the potential to contribute to individual-based cancer care and transform the future of medicine.


2009 ◽  
Vol 14 (2) ◽  
pp. 109-119 ◽  
Author(s):  
Ulrich W. Ebner-Priemer ◽  
Timothy J. Trull

Convergent experimental data, autobiographical studies, and investigations on daily life have all demonstrated that gathering information retrospectively is a highly dubious methodology. Retrospection is subject to multiple systematic distortions (i.e., affective valence effect, mood congruent memory effect, duration neglect; peak end rule) as it is based on (often biased) storage and recollection of memories of the original experience or the behavior that are of interest. The method of choice to circumvent these biases is the use of electronic diaries to collect self-reported symptoms, behaviors, or physiological processes in real time. Different terms have been used for this kind of methodology: ambulatory assessment, ecological momentary assessment, experience sampling method, and real-time data capture. Even though the terms differ, they have in common the use of computer-assisted methodology to assess self-reported symptoms, behaviors, or physiological processes, while the participant undergoes normal daily activities. In this review we discuss the main features and advantages of ambulatory assessment regarding clinical psychology and psychiatry: (a) the use of realtime assessment to circumvent biased recollection, (b) assessment in real life to enhance generalizability, (c) repeated assessment to investigate within person processes, (d) multimodal assessment, including psychological, physiological and behavioral data, (e) the opportunity to assess and investigate context-specific relationships, and (f) the possibility of giving feedback in real time. Using prototypic examples from the literature of clinical psychology and psychiatry, we demonstrate that ambulatory assessment can answer specific research questions better than laboratory or questionnaire studies.


SERIEs ◽  
2021 ◽  
Author(s):  
Miguel Ángel Borrella-Mas ◽  
Martin Rode

AbstractEver since the spectacular boom and bust cycle of the Spanish real estate industry, endemic corruption at the local level has become a widely recognized problem in the national public discourse. In an effort to expose an under-explored political determinant, this paper investigates the effect of local and regional alignment in fomenting corruption at the Spanish municipal level. To do so, we construct an ample panel dataset on the prevalence of corrupt practices by local politicians, which is employed to test the possible impact of partisan alignment in three consecutive joint municipal and regional elections. Findings show aligned municipalities to be more corrupt than non-aligned ones, an effect that is further associated with absolute majorities at both levels of government and higher capital transfers. By contrast, we also show that “throwing the rascals out” could be an effective strategy for curbing the corrupt practices of aligned municipalities. This indicates that the democratic political process may be effective in corruption control if agreements can be reached to remove corrupt politicians or parties from power.


Author(s):  
Francesco Galofaro

AbstractThe paper presents a semiotic interpretation of the phenomenological debate on the notion of person, focusing in particular on Edmund Husserl, Max Scheler, and Edith Stein. The semiotic interpretation lets us identify the categories that orient the debate: collective/individual and subject/object. As we will see, the phenomenological analysis of the relation between person and social units such as the community, the association, and the mass shows similarities to contemporary socio-semiotic models. The difference between community, association, and mass provides an explanation for the establishment of legal systems. The notion of person we inherit from phenomenology can also be useful in facing juridical problems raised by the use of non-human decision-makers such as machine learning algorithms and artificial intelligence applications.


2020 ◽  
Vol 9 (10) ◽  
pp. 3313 ◽  
Author(s):  
Hemant Goyal ◽  
Rupinder Mann ◽  
Zainab Gandhi ◽  
Abhilash Perisetti ◽  
Aman Ali ◽  
...  

Globally, colorectal cancer is the third most diagnosed malignancy. It causes significant mortality and morbidity, which can be reduced by early diagnosis with an effective screening test. Integrating artificial intelligence (AI) and computer-aided detection (CAD) with screening methods has shown promising colorectal cancer screening results. AI could provide a “second look” for endoscopists to decrease the rate of missed polyps during a colonoscopy. It can also improve detection and characterization of polyps by integration with colonoscopy and various advanced endoscopic modalities such as magnifying narrow-band imaging, endocytoscopy, confocal endomicroscopy, laser-induced fluorescence spectroscopy, and magnifying chromoendoscopy. This descriptive review discusses various AI and CAD applications in colorectal cancer screening, polyp detection, and characterization.


Sign in / Sign up

Export Citation Format

Share Document