scholarly journals Apparel Performance of Flame Retardant Silk Fabrics

2013 ◽  
Vol 8 (4) ◽  
pp. 155892501300800
Author(s):  
Jinping Guan ◽  
Hong Lu ◽  
Yan Chen

Many countries enacted flame retardant legislation for apparel such as evening dress, and pajamas. But durable and formaldehyde free flame retardant finishing for silk is necessary and challenging. In this paper, three kinds of silk fabrics with different weaving styles for apparel uses were treated with a vinyl phosphorus monomer dimethyl-2-(methacryloyloxyethyl) phosphate (DMMEP) by a graft copolymerization technique using potassium persulfate as an initiator. The treated silk fabrics can be self-extinguished after being ignited with a candle like fire, can pass the vertical flammability test, and. show some decrease in permeability. Fabric bending, shear, compression, and drape were tested so that possible problems in garment manufacturing could be predicted, because these properties not only affect the appearance of silk products but also influence the garment making process. The sewing properties of the treated silk fabrics are also discussed.

2012 ◽  
Vol 441 ◽  
pp. 284-288
Author(s):  
Hong Lu ◽  
Yan Chen ◽  
Jin Ping Guan

In this paper, four kinds of silk georgettes with different density were chosen as samples. The flame retardant formaldehyde-free vinyl phosphate dimethyl-2-(methacryloyloxyethyl) phosphate (DMMEP) was grafted onto them by graft copolymerization technique. Some tests such as Limiting Oxygen Index (LOI), vertical flammability, wrinkle resistance and color fastness were examined. Through the discussion and analysis of the experiment results, the properties of original and treated fabrics were compared and suggestions were given for the flame retardant process and garment design.


2019 ◽  
pp. 152808371988181
Author(s):  
Ying Liu ◽  
Li Zhou ◽  
Fang Ding ◽  
Shanshan Li ◽  
Rong Li ◽  
...  

In this study, a novel flame-retardant diethyl methacryloylphosphoramidate containing phosphorus and nitrogen was synthesized and characterized by Fourier transform infrared and nuclear magnetic resonance. The synthesized compound was grafted onto cotton fabrics using electron beam irradiation and pad dry cure processes. Scanning electron microscope and X-ray photoelectron spectroscopy were used to characterize the surfaces of the modified cotton fabrics to confirm that diethyl methacryloylphosphoramidate was grafted on cotton fabrics successfully. Both electron beam–cotton and pad dry cure–cotton exhibited efficient flame retardancy which was proved by limiting oxygen index and vertical flammability test. Thermogravimetric analysis results showed that both electron beam-cotton and pad dry cure–cotton degraded at lower temperature and produced higher yields at 600℃. The tensile loss of electron beam–cotton was lower than that of pad dry cure–cotton, and within the acceptable range in flame retardant finishing.


Graft copolymers of acrylic monomers with cotton cellulose were obtained. The dependence of the degree and efficiency of grafting of acrylic acid and methyl methacrylate to cellulose on the concentration of monomer and initiator was investigated. Pre-adsorption of the initiator in the macromolecules of cellulose leads to an increase in the efficiency of the grafting. The efficiency of grafting is higher in those systems in which the initiator used is insoluble in the monomer solvent. Absorption of cellulose with an aqueous solution of the initiator - potassium persulfate, followed by removal of water was done. The advantage of using a water-soluble initiator is that during subsequent processing with a solution of monomer in an organic solvent, the desorption of the active centers does not occur. An increase in the concentration of theinitiator leads to an increase in the degree of grafting, a slight increase in the efficiency of the grafting, a significant decrease in the degree of polymerization and the molecular weight of the graft chains. In a heterogeneous process, an increase in the efficiency of grafting with an increase in the concentration of theinitiator is promoted by the additional adsorption interaction of the initiator molecules with the surface of cellulose. With an increase in the concentration of monomers, the overall degree of conversion slightly increases, the efficiency of grafting slightly decreases, the degree of grafting and the molecular weight of the graft chains increase significantly. The mechanism of graft copolymerization was investigated by comparative analysis of the IR and PMR spectra of cellulose, potassium persulfate, acrylic monomers and products of their interaction. Due to the results of spectroscopic studies, a scheme of graft copolymerization reactions has been proposed. The active centers of graft copolymerization are formed as a result of the reductive interaction of potassium persulfate, water and cellulose macromolecules.


2018 ◽  
Vol 22 (4) ◽  
pp. 1665-1671 ◽  
Author(s):  
Yun-Bo Chen ◽  
Chun Liu ◽  
Shao-Li Zhang ◽  
Guo-Qiang Chen ◽  
Tie-Ling Xing

In order to obtain the flame retardant silk fabric, silica sols and phytic acid were prepared and applied to the silk fabrics. Vertical combustion experiment, thermogravimetric analysis, Fourier transform infrared spectra and smoke density test were used to investigate the combustion behavior, thermal property, and kinetics model of silk fabrics before and after flame retardant finish. The results showed that the sol coating on silk fabrics could increase the carbon residue and hinder the spread of flame when burning, and the tensile strength of treated silk was slightly damaged. Furthermore, the kinetics model of silk thermal decomposition conformed to Avrami-Erofeev model.


2014 ◽  
Vol 9 (1) ◽  
pp. 155892501400900
Author(s):  
Fangjun Zhang ◽  
Jinping Guan ◽  
Guoqiang Chen

In this paper, a flame retardant dimethyl-2–(methacryloyloxyethyl) phosphate (DMMEP) was applied to wool fabrics by the graft copolymerization technique initiated with potassium persulfate (KPS) in water media. FTIR and SEM testing were used to explore the grafting evidence on the fiber surface, the SEM results show chemical deposition on the wool fiber surface and the scales could not be seen clearly. FTIR testing exhibited IR absorption of DMMEP on the wool fiber. Thermal gravimetric analysis, differential thermal analysis (DTA), and char residue morphology SEM observation show the decomposition mode of wool fabrics and infer the possible flame retardant mechanism. The phosphorus based flame retardant DMMEP was prone to promote more nonflammble char during combustion, and increased add-on of DMMEP produced increased fabric char. With a DMMEP add-on increase from 50% to 100% on the weight of wool fabric, the treated wool fabric demonstrated high flame retardancy with an LOI above 35% which means it can not be ignited with a candle like fire, and could pass the vertical flammability test. DMMEP treatment slightly affected whiteness and moisture regain, but yielded a relatively large decrease in permeability and tensile strength, which should be explored further in later research.


2002 ◽  
Vol 83 (10) ◽  
pp. 2275-2275
Author(s):  
Isam Y. M. Qudsieh ◽  
Wan Md Zin Wan Yunus ◽  
Fakhru'l-Razi A. ◽  
Mansor B. Ahmad ◽  
Mohamad Zaki Ab. Rahman

Sign in / Sign up

Export Citation Format

Share Document