Performance of Flame Retardant Wool Fabric Grafted with Vinyl Phosphate

2014 ◽  
Vol 9 (1) ◽  
pp. 155892501400900
Author(s):  
Fangjun Zhang ◽  
Jinping Guan ◽  
Guoqiang Chen

In this paper, a flame retardant dimethyl-2–(methacryloyloxyethyl) phosphate (DMMEP) was applied to wool fabrics by the graft copolymerization technique initiated with potassium persulfate (KPS) in water media. FTIR and SEM testing were used to explore the grafting evidence on the fiber surface, the SEM results show chemical deposition on the wool fiber surface and the scales could not be seen clearly. FTIR testing exhibited IR absorption of DMMEP on the wool fiber. Thermal gravimetric analysis, differential thermal analysis (DTA), and char residue morphology SEM observation show the decomposition mode of wool fabrics and infer the possible flame retardant mechanism. The phosphorus based flame retardant DMMEP was prone to promote more nonflammble char during combustion, and increased add-on of DMMEP produced increased fabric char. With a DMMEP add-on increase from 50% to 100% on the weight of wool fabric, the treated wool fabric demonstrated high flame retardancy with an LOI above 35% which means it can not be ignited with a candle like fire, and could pass the vertical flammability test. DMMEP treatment slightly affected whiteness and moisture regain, but yielded a relatively large decrease in permeability and tensile strength, which should be explored further in later research.

2007 ◽  
Vol 14 (04) ◽  
pp. 559-563 ◽  
Author(s):  
C. W. KAN ◽  
C. W. M. YUEN ◽  
C. K. CHAN ◽  
M. P. LAU

Wool fiber is commonly used in textile industry, however, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling, and dyeability. These problems may be attributed mainly in the presence of wool scales on the fiber surface. Recently, chemical treatments such as oxidation and reduction are the commonly used descaling methods in the industry. However, as a result of the pollution caused by various chemical treatments, physical treatment such as low temperature plasma (LTP) treatment has been introduced recently because it is similarly capable of achieving a comparable descaling effect. Most of the discussions on the applications of LTP treatment on wool fiber were focused on applying this technique for improving the surface wettability and shrink resistance. Meanwhile, little discussion has been made on the mechanical properties, thermal properties, and the air permeability. In this paper, wool fabric was treated with LTP treatment with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabrics low-stress mechanical properties, air permeability, and thermal properties were evaluated and discussed.


2012 ◽  
Vol 441 ◽  
pp. 49-53
Author(s):  
Hua Qing Wang ◽  
Mei Yang

With the increase in the environmental protection consciousness of people, attention has focused on plasma technology because of its efficiency and environmentally friendliness. In order to improve the dyeing behavior of wool fabrics, surface modification of wool fabrics was carried out using an atmospheric pressure (argon) low temperature plasma treatment (LTP). Morphology and chemical composition analyses of the treated wool fiber surface were carried out by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The effect on the surface properties of wool fabrics treated for different times was evaluated. The results showed that the coloration of wool fabric is improved with an argon atmospheric pressure low temperature plasma (LTP) treatment but the fabric has a lower color fastness to washing and rubbing. This results from the formation of sulfonic groups and the increase in nitrogen content attributed to more severe etching and oxidization on the surface of wool fibers.


2012 ◽  
Vol 557-559 ◽  
pp. 952-956
Author(s):  
Fang Jun Zhang ◽  
Jin Ping Guan ◽  
Guo Qiang Chen

In this paper, a flame retardant dimethyl-2-(methacryloyloxyethyl) phosphate (DMMEP) was applied onto wool fabrics by graft copolymerization technique in water media. The paper discussed the technological conditions of the formation of wool-g-DMMEP such as the pH value of reaction, reaction temperature and time etc. The weight gain of wool fabrics was chosen to be the indicator of optimized technological condition. The results showed that DMMEP treated wool fabrics have high limiting oxygen index(LOI). Wool fabric with weight gain 4.27% has high LOI 34.6%, which is hard ignited in air. Char residues of DMMEP treated wool fabrics are more rigid and solid.


2021 ◽  
pp. 004051752110639
Author(s):  
Xian-Wei Cheng ◽  
Wen-Jie Jin ◽  
Chen Zhang ◽  
Yan-Xiang Wu ◽  
Jin-Ping Guan

Durable and formaldehyde-free flame-retardant (FR) modification of wool fabric using phosphorous compounds is of great interest. In this study, Schiff base imine groups were firstly introduced onto wool fiber through aldehyde-amine condensation between p-hydroxybenzaldehyde and wool fiber. Then, an efficient and durable FR wool fabric was fabricated by incorporating diethyl phosphite (DEP) into a Schiff base intermediate via the Pudovik reaction. The potential reaction mechanism among p-hydroxybenzaldehyde, DEP and wool fiber was explored. The thermal stability, smoke generation ability, FR ability and washing durability of the modified wool fabric were studied. The FR modification significantly increased the thermal resistance of wool fabric and suppressed smoke generation by half. The wool fabric modified by 20 g/L DEP was able to self-extinguish during the burning test, suggesting the higher FR efficiency of the DEP-incorporated Schiff base system. The modified wool fabric still self-extinguished after 20 commercial launderings, which is attributed to the covalent grafting of DEP onto wool fiber. Char residue analyses revealed the condensed charring FR mechanism of the DEP-incorporated Schiff base system on wool. This work provides a novel approach to prepare efficient and durable FR functional wool fabric via the Schiff base reaction and Pudovik reaction among p-hydroxybenzaldehyde, DEP and wool fiber.


2021 ◽  
Author(s):  
Pundalik Mali ◽  
Narendra Sonawane ◽  
Nilesh Pawar ◽  
Vikas Patil

Abstract A novel melamine-phosphate trifunctional acrylate MPTO) was successfully synthesized via simple cyclization of hexamethylolmelamine (HMM) with phosphorous oxychloride (POCl3) followed by addition reaction of hydroxyethylmethacrylate (HEMA). The molecular structure of MPTO was identified by FTIR and 1H-NMR, 13C-NMR, and GC-MS spectra. The synthesized MPTO oligomer was impregnated with polyurethane acrylate to make the various formulation of UV-cured coatings. The polyurethanes-MPTO oligomers were coated on wood and galvanized steel panels. The properties of UV-cured PU-MPTO were studied by differential scanning calorimeter (DSC), while their crystallinity by X-ray diffraction analysis (XRD). The thermo-gravimetric analysis (TGA) exhibited a high char yield of 18.4% at 800 °C. Moreover, coating films show prominent flame retardancy with UL-94 V-0 rating and maximum limiting index value (LOI) values of 34.8%, which are much higher than the common polyurethane coatings. The polyurethane coatings cured with MPTO exhibited excellent mechanical properties were estimated various tests such as adhesion, pencil hardness, solvent resistance, flexibility, and corrosion test. The coating performance revealed that MPTO improves the mechanical, thermal, and flame retardant properties because their unique structure contains melamine-phosphate moiety and long aliphatic chains of an acrylate ester. These high-performance melamine-based UV-curable coatings are promising for extensive applications.


2018 ◽  
Vol 665 ◽  
pp. 28-36 ◽  
Author(s):  
Xian-Wei Cheng ◽  
Jin-Ping Guan ◽  
Xu-Hong Yang ◽  
Ren-Cheng Tang

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5978
Author(s):  
Riyazuddin ◽  
Samrin Bano ◽  
Fohad Mabood Husain ◽  
Jamal Akhter Siddique ◽  
Khadijah H. Alharbi ◽  
...  

Epoxy resins (EP) have been used as a thermos-setting material in the field of coating, casting, bonding agent, and laminating. However, a major drawback associated with its use is the lack of good flaming properties, and it is responsible for heavy smoke along with hazardous gases considerably limiting its uses in various fields. In this study, N-ethanolamine triazine-piperizine, a melamine polymer (ETPMP), was established as a new charring-foaming agent and was successfully synthesized with ethanolamine, piperizine, cyanuric chloride, and melamine as precursor molecules via the nucleophilic substitution reaction method. Elemental analysis and Fourier transform infrared (FTIR) spectroscopy analysis were applied to approve the synthesis of ETPMP and confirmation of its structure and characterization. The epoxy coating of intumescent flame retardant (IFR) was equipped by introducing ETPMP, ammonium polyphosphate (APP), and copper oxide (CuO) in multiple composition ratios. CuO was loaded at various amounts into the IFR-coating system as a synergistic agent. The synergistic action of CuO on IFR coatings was scientifically examined by using different analytical tests such as vertical burning test (UL-94V), limited oxygen index (LOI), thermal gravimetric analysis (TGA), cone calorimeter, and scanning electron microscope (SEM). The results showed that small changes in the amount of CuO expressively amplified the LOI results and enhanced the V-0 ratings in the UL-94V test. The TGA data clearly demonstrate that the inclusion of CuO can transform the thermal deprivation behavior of coatings with a growing char slag proportion with elevated temperatures. Information from cone calorimeter data affirmed that CuO can decrease the burning factors by total heat release (THR) together with peak heat release rate (PHRR). The SEM images indicated that CuO can enrich the power and compression of the intumescent char that restricts the movement of heat and oxygen. Our results demonstrate a positive influence of CuO on the epoxy-headed intumescent flame retardant coatings.


2019 ◽  
pp. 152808371988181
Author(s):  
Ying Liu ◽  
Li Zhou ◽  
Fang Ding ◽  
Shanshan Li ◽  
Rong Li ◽  
...  

In this study, a novel flame-retardant diethyl methacryloylphosphoramidate containing phosphorus and nitrogen was synthesized and characterized by Fourier transform infrared and nuclear magnetic resonance. The synthesized compound was grafted onto cotton fabrics using electron beam irradiation and pad dry cure processes. Scanning electron microscope and X-ray photoelectron spectroscopy were used to characterize the surfaces of the modified cotton fabrics to confirm that diethyl methacryloylphosphoramidate was grafted on cotton fabrics successfully. Both electron beam–cotton and pad dry cure–cotton exhibited efficient flame retardancy which was proved by limiting oxygen index and vertical flammability test. Thermogravimetric analysis results showed that both electron beam-cotton and pad dry cure–cotton degraded at lower temperature and produced higher yields at 600℃. The tensile loss of electron beam–cotton was lower than that of pad dry cure–cotton, and within the acceptable range in flame retardant finishing.


2019 ◽  
Vol 90 (7-8) ◽  
pp. 744-756 ◽  
Author(s):  
Shahid Adeel ◽  
Shumaila Kiran ◽  
Noman Habib ◽  
Atya Hassan ◽  
Shagufta Kamal ◽  
...  

Due to an increasing awareness of the harmful effects of synthetic dyes among the global community, the demand for natural dyes in the textile sector has increased. The current study has been conducted to explore coconut coir, that is, Cocos nucifera, as a new dye yielding plant for wool dyeing under ultrasonic (US) radiation. Unirradiated and US-irradiated extracts of coconut coir were utilized to dye unirradiated and US-irradiated wool fabrics. To make the process more sustainable, acacia, henna, turmeric and pomegranate extracts as biomordants were used to dye wool fabric at 65℃ for 45 min. It was found that a good color yield was achieved by dyeing US-treated wool with US-treated acidic methanolic extract at 65℃ for 45 min. It is found that biomordanting profoundly added value in coloration and also enhanced the fastness rating of the dyed wool fabrics. It is concluded that US rays have excellent efficacy for exploring the coloring wealth of plants for dyeing of natural fabrics.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 71 ◽  
Author(s):  
Xueying Shan ◽  
Kuanyu Jiang ◽  
Jinchun Li ◽  
Yan Song ◽  
Ji Han ◽  
...  

A new P-N containing the flame retardant, which was namely N,N′-dibutyl-phosphate diamide (DBPDA), was synthesized and it was assembled into the cavity of β-cyclodextrin (β-CD) to form an inclusion complex (IC). The structure and properties of IC were characterized by Fourier transform infraredspectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), 1H nuclear magnetic resonance (1H NMR), scanning electron microscopy with X-ray microanalysis (SEM-EDS), differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). 1H NMR and SEM-EDS were also used to identify the molar ratio of β-CD/DBPDA in IC and the results from the analyses indicated that their molar ratio was 1:1. In order to test the flame retardant effect of IC, it was added to epoxy (EP). IC was proposed to be able to act as an intumescent flame retardant (IFR) system in EP through a combination of β-CD and DBPDA properties during the combustion process. β-CD is a biomass carbon source, which has the advantages of environmental protection and low cost. Furthermore, DBPDA is both a source of acid and gas. When IC was heated, IC had the advantage of acting as both a carbon source and foam forming agent, while the DBPDA component were able to directly generate phosphoric acid and NH3 in situ. The impact of IC in low additive amounts on flame retardancy of EP was studied by the cone calorimeter test. When only 3 wt % IC was incorporated, the peak values of heat release rate (pHRR) and smoke production rate (pSPR) of EP were reduced by 22.9% and 33.3% respectively, which suggested that IC could suppress the heat and smoke release efficiently.


Sign in / Sign up

Export Citation Format

Share Document