scholarly journals Flow field and species concentration measurements in the primary zone of an aero-engine combustion chamber

2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774805
Author(s):  
Yinli Xiao ◽  
Zupeng Wang ◽  
Zhengxin Lai ◽  
Kefei Chen ◽  
Wenyan Song

The principal features of primary zone determine the performance parameters of the whole combustion chamber, such as the pollutant emissions and combustion efficiency. In this work, flow field and major species concentration measurements are conducted in the primary zone of an aero-engine combustion chamber. The operating conditions such as air inlet temperature, chamber pressure, and air-to-fuel ratio are chosen to replicate the realistic operating conditions. The velocity field and streamlines are obtained by particle imaging velocimetry technology. The concentrations of major species are acquired by a spontaneous Raman scattering system. This article validates the feasibility of two laser diagnostic measurement techniques and presents the initial results under realistic aero-engine conditions.

Author(s):  
Thomas von Langenthal ◽  
Nikolaos Zarzalis ◽  
Marco Konle

Abstract RQL (rich burn, quick quench, lean burn) combustion chambers are common in modern aero engines due to their low NOx emissions and good stability. The rich primary zone leads to lower flame temperatures and in combination with the lack of oxygen, the NOx production is low. The mixing of the secondary air must be quick in order to avoid stoichiometric conditions and at the same time must ensure the oxidation of the soot produced in the fuel rich primary zone to keep soot emissions to a minimum. However, the design of such a combustion chamber is complicated due to the complex interaction between the swirling primary flow and the jets of the secondary airflow. In this paper, we present a new test rig, which was designed to study combustion processes inside RQL combustion chambers at atmospheric conditions. The test rig features liquid kerosene combustion and a realistic quenching zone as well as good access for optical and conventional measurement techniques. For realistic engine like conditions the combustion air is preheated to 600 K and the fuel–air equivalence ratio in the primary combustion zone is set to be between Φ = 1.66 and Φ = 1.25, resulting in an overall thermal power between 80 kW and 110 kW. To get insights into the complex flow field inside the combustion chamber unsteady RANS simulations of both the reacting and the non-reacting case were performed using OpenFOAM. The turbulent flow field was modeled using the k-ω-SST model and the combustion was simulated using the Partially Stirred Reactor model. The experimental investigations showed two stable flame types for the same operating conditions with considerable differences in the visible flame structure and soot radiation. The flow field of both of these flame types were measured using a 1.5 kHz 2D PIV System. The numerical simulations showed good overall agreement with the experimental results but could not represent the change in flame type. In order to understand the underlying effects of the flame change the OH* chemiluminescence was recorded and the two-phase flow near the nozzle exit was investigated. This showed that the change in flame structure might arise due to spray dispersion of the pilot fuel nozzle and the recirculation of the secondary air into the primary zone.


Author(s):  
Yunhui Peng ◽  
Quanhong Xu ◽  
Yuzhen Lin

Improvement of the lean blowout limit and more uniform combustor exit temperature distribution are particularly desirable for future aero engine. A triple swirler combination plus an airblast fuel injector might be a promising solution. The design with the triple swirler plus the airblast fuel injector including design A and B was presented and investigated in this paper. Single rectangle sector module combustor was used in the experiment for lean blowout (LBO), and three cups rectangle sector combustor was used for pattern factor (PF) experiments. The LBO and PF experiment data were provided. The primary zone flow field was measured by PIV (Particle Image Velocimetry) under atmospheric pressure and temperature. The result showed that the design A was a promising design, and the primary jet played very important role for flow field of primary zone. The insight relation between flow field and combustion performance could be found out from this paper.


Author(s):  
Korukonda Venkata Lakshmi Narayana Rao ◽  
B. V. S. S. S. Prasad ◽  
Ch. Kanna Babu ◽  
Girish K. Degaonkar

The Gas turbine combustion chamber is the highest thermally loaded component where the temperature of the combustion gases is higher than the melting point of the liner that confines the gases. Combustor liner temperatures have to be evaluated at all the operating conditions in the operating envelope to ensure a satisfactory liner life and structural integrity. On experimental side the combustion chamber rig testing involves a lot of time and is very expensive, while the numerical computations and simulations has to be validated with the experimental results. This paper is mainly based on the work carried out in validating the liner temperatures of a straight flow annular combustion chamber for an aero engine application. Limited experiments have been carried out by measuring the liner wall temperatures using k-type thermocouples along the liner axial length. The experiments on the combustion chamber testing are carried out at the engine level testing. The liner temperature which is numerically computed by CHT investigations using CFX code is verified with the experimental data. This helped in better understanding the flow characterization around and along the liner wall. The main flow variables used are the mass flow rate, temperature and the pressure at the combustor inlet. Initially, the fuel air ratio is used accordingly to maintain the same T4/T3 ratio. The effect of liner temperature with T3 is studied. Since T4 is constant, the liner temperature is only dependent on T3 and follows a specific temperature distribution for the given combustor geometry. Hence this approach will be very useful in estimating the liner temperatures at any given T3 for a given combustor geometry. Further the liner temperature is also estimated at other fuel air ratios (different T4/T3 ratios) by using the verified CHT numerical computations and found that TL/T3 remains almost constant for any air fuel ratio that is encountered in the operating envelope of the aero engine.


Author(s):  
Pramod S. Mehta ◽  
M. Achuth

A well-timed turbulence due to tumble in SI engines is found to be of substantial benefit to the engine combustion process. A mean flow analysis of tumble motion in conjunction with k-ε turbulence model has been developed to provide a detailed mechanism for turbulence enhancement due to tumble. Considering that the tumble phenomenon is highly geometry dependant, an attempt is made to relate tumble-generated turbulence to the parameters relating to intake conditions and combustion chamber geometry. Finally, a new parameter ‘vortex life span’ has been proposed to characterize tumble and its turbulence, which globally encompasses intake and combustion chamber related features. The sensitivity of this parameter is demonstrated at various operating conditions. It is found that the ‘vortex life span’ has an inverse relationship with commonly measured BDC tumble ratio and is more sensitive to the chamber geometry effects.


Author(s):  
T. Soworka ◽  
T. Behrendt ◽  
C. Hassa ◽  
J. Heinze ◽  
E. Magens ◽  
...  

Abstract Future rich-burn/quick-quench/lean-burn (RQL) burners for aero engines face the challenge to further reduce the emission of soot. Alternative ways of fuel injection are therefore in the focus of modern RQL combustion systems. This contribution aims to investigate experimentally the influence of fuel injection on the reacting flow field, with the emphasis on soot production in the primary zone. For the test, a Rolls-Royce prototype burner was used in two different configurations which differ only in the axial location of jet in cross flow fuel injection and thereby provoke different ways of fuel atomization. In the upstream configuration the burner features characteristics of a pre-filming airblast atomizer. Whereas with the fuel tip in downstream position solely Jet-in-Cross-Flow fuel atomisation is expected. The burner was tested at realistic aero engine combustor conditions (p30 = 9.28 bar, T30 = 603 K, AFR = 7.6). Several optical measurement techniques were used to characterise the reacting flow field. Their difficult application in a rich burn environment is described briefly. The structure of the reacting flow field is illustrated by Particle-Image-Velocimetry (PIV). Planar Mie scattering and Planar Laser-Induced Fluorescence (PLIF) are used to characterise the placement of liquid and gaseous fuel respectively. The location and structure of heat release zones are captured in terms of OH* and CO2* chemiluminescence. Finally Laser-Induced-Incandescence (LII) is used to obtain three dimensional soot distributions in the primary zone. On this basis 20% less soot was measured for the upstream configuration at the axial location of maximal soot concentration. This remarkable difference could be attributed to the different placement of liquid fuel and the resulting better mixing.


Author(s):  
J. Aidarinis ◽  
D. Missirlis ◽  
K. Yakinthos ◽  
A. Goulas

The constant development of aero engines towards lighter but yet more compact designs, without decreasing their efficiency, has led to gradually increased demands of the lubrication systems, such as the bearing chambers of the aero engine. For this reason, it is of particular importance to increase our level of understanding of the flow field inside the bearing chambers in order to optimize its design and performance. The flow field in such cases is of a complicated nature since there is a strong interaction between air-flow and lubricant oil together with the geometrical configurations and the shaft rotational speed inside the bearing chamber. The behavior of this interaction must be investigated in order to understand the flow field development inside the aero engine bearing and, at a next step, optimize its performance in relation to the lubrication and heat transfer capabilities. Such an effort is presented in this work where an investigation of the air-flow field development inside the front bearing chamber of an aero engine is attempted. The front bearing chamber is divided in two separate smaller sections where the flow passes from the first section partially through the bearing and the holding structure, to the second one where the vent and the scavenge are placed. The investigation was performed with the combined use of experimental measurements and Computational Fluid Dynamics (CFD) modeling. The experimental measurements were carried out with the use of a Laser Doppler Anemometry (LDA) system in an experimental rig modeling the front bearing chamber of an aero engine for real operating conditions taking into account both air-flow and lubricant oil-flow and for a varying number of shaft rotating speeds. The CFD modeling was performed with the use of a commercial CFD package. The air-flow inside the bearing was modeled with the adoption of a porous medium assumption. The experimental measurements and the CFD computations presented similar flow patterns and satisfactory quantitative agreement. At the same time the effect of the important parameters such as the air and oil mass flow together with the shaft rotation speed and the effect of the chamber inside geometry were identified. These conclusions can be exploited in future attempts in combination with the developed CFD model, in order to optimize the efficiency of the lubricant and cooling system. The latter forms the main target of this work which is the development of a useful engineering tool capable of predicting the flow field inside the aero engine bearing so as to be used for optimization efforts.


Author(s):  
Jeevan Sapkota ◽  
Yi Hua Xu ◽  
Hai Jun Sun

Pintle technology is currently a versatile technology used in a solid rocket motor (SRM) to control the desired thrust by changing the nozzle throat area, while effectively controlling the chamber pressure at the same time. The sudden movement of the pintle can induce rapid changes in the flow field and the occurrence of pressure oscillations inside the combustion chamber. The analysis of such rapid changes is essential to design an efficient controllable pintle rocket motor for a better thrust regulation. Two-dimensional axisymmetric models with mesh generation and required boundary condition were designed to analyze the effects of three different pintle head shape models in SRM thrust regulation effect. Dynamic mesh method was used with specific velocity for moving plug/pintle in the numerical analysis of SRM thrust regulation. The effects of different pintle head models on the flow field, combustion chamber pressure, mass-flow rate, thrust and Mach number were investigated. According to the analysis of total pressure response time, the simulation data revealed that circular pintle head model responded faster among three different models. According to the thrust effect, parabolic pintle has the maximum value of thrust and the greatest total pressure recovery coefficient among all pintle head models.


Sign in / Sign up

Export Citation Format

Share Document