scholarly journals Surface work-hardening optimization of cold roll-beating splines based on an improved double-response surface-satisfaction function method

2018 ◽  
Vol 10 (6) ◽  
pp. 168781401878263 ◽  
Author(s):  
Fengkui Cui ◽  
Yongxiang Su ◽  
Xiaoqiang Wang ◽  
Xiang Yu ◽  
Xiaolin Ruan ◽  
...  

The work hardening of a spline during cold roll-beating is used as an indicator to evaluate the mechanical properties of the surface. To further optimize the work-hardening degree of a cold roll-beating spline surface, weight theory and satisfaction functions are used to improve the double-response surface-satisfaction function model. The model describes the involute spline based on the cold roll-beating speed and feed rate. The generalized reduced-order gradient method is applied to optimize the optimal combination of processing parameters. The experiments validate the optimization results of the improved double-response surface-satisfaction function method and the conventional response surface method based on the cold roll-beating spline test and a comparative analysis of the spline surface metallographic structure. The results show that the satisfaction degree of the improved response model is 0.87384, indicating that the model is robust and reliable. The optimized processing parameters are a cold roll speed of 1448.21 r/mm, a feed rate of 41.71 mm/min, and a degree of work hardening of 144.79%. The spline surface work-hardening degree based on the revised model is higher than that of the conventional model. Thus, the improved double-response surface-satisfaction function model provides better accuracy.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
F. K. Cui ◽  
F. Liu ◽  
Y. X. Su ◽  
X. L. Ruan ◽  
S. K. Xu ◽  
...  

Surface performance is an important indicator of the performance of cold roll-beating spline processing. To obtain the best cold roll spline surface performance (surface roughness, residual stress, and surface hardening degree), multiobjective optimal process parameters must be determined. To this end, this paper takes the cold roll-beating spline as the object of study and carries out a cold roll-beating spline surface performance test study. An ideal algorithm for entropy weight is constructed, and the multiobjective decision of the cold roll-beating spline surface performance is determined by using the entropy weight ideal point algorithm, providing a decision on the cold roll-beating spline processing parameters. The grey correlation algorithm is used for verification, and the results show that the multiobjective decision of the cold roll-beating spline surface performance is feasible by using the constructed entropy weight ideal point algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Fengkui Cui ◽  
Yongxiang Su

Surface roughness, residual stress, and work hardening are the key parameters characterizing the mechanical properties of a spline surface after undergoing cold roll-beating. A comprehensive optimization of the mechanical properties of such surfaces has not been previously reported. To improve the performance of the spline surface, gray theory is used to study the relationships between the surface roughness, residual stress, and work hardening in the pitch diameter of spline teeth. This method addresses the surface performance optimization of an involute spline as influenced by the cold roll-beating speed and feed rate as the main parameters during the cold roll-beating process. The results show that the surface roughness and hardening degree of the splines increase with an increasing feed rate but decrease with an increasing cold roll-beating speed; the residual stress of the spline decreases with an increasing feed rate and increases with an increasing cold roll-beating speed. The results also show that the feed rate has a strong influence on the surface performance of splines produced by cold roll-beating. The optimal process parameters in terms of the spline surface performance are a cold roll-beating speed of 1428 r/min and a feed rate of 42 mm/min. The results of the present work emphasize the significance of improving the surface performance of the cold roll-beating spline-forming process and determining the optimal process parameters.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fengkui Cui ◽  
Yongxiang Su ◽  
Shaoke Xu ◽  
Fei Liu ◽  
Guolin Yao

The aim of this work is to control the physical and mechanical properties of a spline surface and achieve a reasonable choice of high-speed cold roll-beating processing parameters. The surface residual stress and surface work hardening at the indexing circle serve as the main evaluation indices of the physical and mechanical properties of the spline surface. The influence degree of the processing parameters on each evaluation index is analyzed using Taguchi theory. An optimized model for improving the Taguchi process capability index that combines Taguchi theory with entropy theory is established, and the integral process capacity index is optimized via the generalized price reduction gradient method. The results of the optimization and the verification test are implemented in a high-speed cold roll forming test for comparison. The results show that the influence of processing parameters on the physical and mechanical properties of the splash surface of the cold roll can be ordered as follows: feed rate > roll round radius > cold roll-beating speed. In addition, the spline surface physical and mechanical properties of the optimal processing parameters were obtained for the combination of a cold rolling speed of 1581 r/mm, feed rate of 42 mm/min, and roll round radius of 2 mm.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4879
Author(s):  
Mireia Vilanova ◽  
Rubén Escribano-García ◽  
Teresa Guraya ◽  
Maria San Sebastian

A method to find the optimum process parameters for manufacturing nickel-based superalloy Inconel 738LC by laser powder bed fusion (LPBF) technology is presented. This material is known to form cracks during its processing by LPBF technology; thus, process parameters have to be optimized to get a high quality product. In this work, the objective of the optimization was to obtain samples with fewer pores and cracks. A design of experiments (DoE) technique was implemented to define the reduced set of samples. Each sample was manufactured by LPBF with a specific combination of laser power, laser scan speed, hatch distance and scan strategy parameters. Using the porosity and crack density results obtained from the DoE samples, quadratic models were fitted, which allowed identifying the optimal working point by applying the response surface method (RSM). Finally, five samples with the predicted optimal processing parameters were fabricated. The examination of these samples showed that it was possible to manufacture IN738LC samples free of cracks and with a porosity percentage below 0.1%. Therefore, it was demonstrated that RSM is suitable for obtaining optimum process parameters for IN738LC alloy manufacturing by LPBF technology.


Author(s):  
Mootaz Ghazy ◽  
Islam Shyha ◽  
Nour El Nakeeb ◽  
Mahmoud Ahmed El Sayed

Sign in / Sign up

Export Citation Format

Share Document