scholarly journals Influence of boundary condition and stiffener type on collapse behaviours of stiffened panels under longitudinal compression

2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988476
Author(s):  
Jin Pan ◽  
Na Li ◽  
Zhao Jun Song ◽  
Ming Cai Xu

A series of stiffened panels with different dimensions and types of stiffener are simulated under longitudinal compression in finite element code ANSYS. Two bays/spans model with periodic boundary condition is adopted to consider the influence of neighbouring members. The stiffened panel adopted in the finite element mode is generally cut from the deck or bottom of a ship hull girder, and thus, the constraint on their edges depends to some extent on the relative structural response of the adjacent members. Hence, to understand the effects of constraint condition on the collapse behaviour, an extensive parametric study is carried out, employing a wide geometrical range for bulk carrier and very large crude carrier. Moreover, considering various collapse modes, the load-carrying capacities of the stiffened panels are also investigated for various stiffener types. It is found that the biaxial stress state caused by longitudinal constraint could increase or decrease the load-carrying capacity of the stiffened panel, which depends on the collapse mode and should be noticed. The transverse constraint on the longitudinal edges could cause biaxial stress state, which might increase or decrease the load-carrying capacity of the stiffened panel, which depends on the collapse modes.

Author(s):  
Jie Cai ◽  
Xiaoli Jiang ◽  
Gabriel Lodewijks

In case of ship accidents, the ship’s hull will inevitably suffer from damages such as holes, cracks, dent etc., which will threaten the structural safety of ship. It is essential to study the ultimate strength of damaged ships in order to facilitate the decision-making process of ship salvage. There are considerable publications on the subject, however, the impact of the induced residual stress and deformation are normally excluded in those studies. This paper therefore aims at investigating the effect of the impact induced residual stress and deformation on the ultimate strength of a stiffened panel through application of a nonlinear Finite Element Analysis (FEA) method. Firstly, a literature review on ultimate strength of damaged ships is presented. Secondly, a nonlinear numerical simulation is adopted to investigate the ultimate strength of stiffened panels accounting for residual stress and deformation. this procedure consists of two stages: the impact stage and the static stage. The results of the numerical simulation of both stages are validated through the results of experiments and simulations available in literature. Afterwards, a series of case studies are performed deploying the validated numerical method. Finally, a closed form expression to predict the ultimate strength accounting for impact induced residual stress and deformation is proposed based on direct simulation. Results show that the combined effect of impact induced residual stress and deformation can significantly reduce structures’ load carrying capacity. The maximum reduction ratio reaches 37% in local stiffened panel. The method of removal of all the plastic deformation area is generally too conservative to predict the ultimate strength of a damaged local stiffened panel, which will underestimate the residual load carrying capacity of ships considerably.


2020 ◽  
Vol 299 ◽  
pp. 1184-1189
Author(s):  
V.V. Zhukov ◽  
Anton V. Eremin ◽  
D.V. Stepanec

In this article, the object of study is a three–layer honeycomb panel with fixing elements (FE), which are used for transporting the panel, and fixing it to the spacecraft. The goal of the work is to determine experimentally the load carrying capacity of the fixing elements under various types of loading, to determine the load carrying capacity of the honeycomb panel of the spacecraft at fixing points and further comparison of the experimental results with the finite element method results calculated by MSC.Patran / Nastran. A method for conducting static tests of fixing elements of a spacecraft honeycomb panel under an external load is described, a description of computer technology of a finite–element solution to the problem of static strength of a honeycomb panel structure in the MSC.Patran environment is presented, and a finite–element model of a honeycomb panel is designed. An assessment of the strength of a three–layer structure at fixing points was carried out, followed by validation of the finite–element model of a honeycomb panel. On the basis of the validated model, the evaluation of the strength of the honeycomb structure was carried out; based on results obtained, the conclusion has been made about the convergence of the results by the finite element method with the results obtained during the experiment.


2019 ◽  
Vol 22 (13) ◽  
pp. 2755-2770
Author(s):  
Fuyun Huang ◽  
Yulong Cui ◽  
Rui Dong ◽  
Jiangang Wei ◽  
Baochun Chen

When casting wet concrete into hollow steel tubular arch during the construction process of a concrete-filled steel tubular arch bridge, an initial stress (due to dead load, etc.) would be produced in the steel tube. In order to understand the influence of this initial stress on the strength of the concrete-filled steel tubular arch bridge, a total of four single tubular arch rib (bare steel first) specimens (concrete-filled steel tubular last) with various initial stress levels were constructed and tested to failure. The test results indicate that the initial stress has a large influence on the ultimate load-carrying capacity and ductility of the arch structure. The high preloading ratio will reduce significantly the strength and ductility that the maximum reductions are over 25%. Then, a finite element method was presented and validated using the test results. Based on this finite element model, a parametric study was performed that considered the influence of various parameters on the ultimate load-carrying capacity of concrete-filled steel tubular arches. These parameters included arch slenderness, rise-to-span ratio, loading method, and initial stress level. The analysis results indicate that the initial stress can reduce the ultimate loading capacity significantly, and this reduction has a strong relationship with arch slenderness and rise-to-span ratio. Finally, a method for calculating the preloading reduction factor of ultimate load-carrying capacity of single concrete-filled steel tubular arch rib structures was proposed based on the equivalent beam–column method.


Tribologia ◽  
2018 ◽  
Vol 273 (3) ◽  
pp. 15-66 ◽  
Author(s):  
Rafał GAWARKIEWICZ

Computer simulations of a number of journal bearing’s geometries utilising acoustic levitation were carried out. The choice of the best geometry depended on the ability of a deformed shape, created by piezo-electric elements, to facilitate squeeze film ultrasonic levitation, and also to create three evenly distributed diverging aerodynamic gaps. Deformations of analysed variants of the bearing’s shape were generated by numerical simulations utilising the finite element method. For the chosen shapes of geometry, prototype bearings were made and their usefulness verified experimentally. As a result, the bearing with the highest load carrying capacity was identified.


2010 ◽  
Vol 163-167 ◽  
pp. 433-438
Author(s):  
Xian Lei Cao ◽  
Ji Ping Hao ◽  
Chun Lei Fan

To obtain a better understanding of the behavior and load-carrying capacity of Q460 high-strength single-angle compression members bolted by one leg, using static loading way to 48 angles carried out experimental study. The experiments show test specimens produce biaxial bending, most small slenderness ratio members are controlled by local buckling, and slender specimens are controlled by overall buckling. In addition to these factors in model experiment, influences of residual stresses on ultimate load-carrying capacity were analyzed by finite element numerical simulation analysis, the results show the residual stresses affect the ultimate load-carrying capacity of angles by about 5% or less. Comparison of the load-carrying capacity of experimental and theoretical results indicate the difference of experimental and finite element values ranges from -9.99% to +9.76%, American Design of Latticed Steel Transmission Structure (ASCE10-1997) and Chinese Code for Design of Steel Structures (GB50017-2003) underestimate separately the experimental load-carrying capacity by about 2.34%~33.93% and 1.18%~63.3%, and the agreement is somewhat good between experimental program and the finite element analysis. Based on model experiment and simulated experiment, the formula of stability coefficient of single-angle compression members was established. It provides basic data for spreading Q460 high-strength single-angles members attached by one leg.


2008 ◽  
Vol 33-37 ◽  
pp. 321-326 ◽  
Author(s):  
Xiu Gen Jiang ◽  
Yang Yang ◽  
Feng Jie Zhang ◽  
Jin San Ju ◽  
Xiao Chuan You

Nonlinear finite element model analysis of the casing plug joints of steel tubular has been realized by ANSYS software. The law of load-carrying capability and stiffness of joint are separately gained by changing the ratio of length and diameter (R/L) and the ratio of the casing length and the main tube length (l/L). The influence of the casing thickness on the load-carrying capability and stiffness are also discussed. The results indicated that the load-carrying capability and stiffness of the joints both increase with the ratio(R/L) increment and the ratio of the casing length and main tube length (l/L). When the main tube thickness is equal to casing thickness, the load-carrying capacity of joints achieves the most.


Author(s):  
Ming Cai Xu ◽  
C. Guedes Soares

The results of five tests on narrow stiffened panels under axial compression until collapse and beyond are presented to investigate the collapse behaviors of stiffened panels. Tension tests were used to evaluate the material properties of the stiffened panels. The tests were made on panels with two half bays plus one full bay in the longitudinal direction. Initial loading cycles were used to eliminate the residual stresses of the stiffener panels. The strain gauges were set on the plates and the stiffeners to record the strain histories. The displacement load relationship was established. The collapse behavior, modes of failure and load-carrying capacity of the stiffened panels are investigated with the experiment.


1998 ◽  
Vol 25 (3) ◽  
pp. 585-594 ◽  
Author(s):  
Murray C Temple ◽  
Sherief SS Sakla

Single-angle compression members are complex members to analyze and design. The two generally accepted design procedures, the simple-column and the beam-column approaches, in general, underestimate the load-carrying capacity of single-angle compression members welded by one leg to a gusset plate fixed to a rigid support. One of the reasons is that these approaches do not properly account for the end constraint provided by the gusset plate. The effective length factor can be adjusted, but this is difficult to do as the end restraint is not easy to evaluate in many practical cases. Another reason is that these approaches are not based on a rational understanding of the failure mechanism of these members. An experimental program confirmed that the finite element method can be used, with a reasonable degree of accuracy, to predict the behavior and load-carrying capacity of single-angle compression members welded by one leg to a gusset plate fixed to a rigid support. The finite element method was used to study some 1800 different combinations of parameters. It was found that out-of-straightness, residual stresses in the angle section, Young's modulus of elasticity, and the unconnected gusset plate length do not have a great effect on the load-carrying capacity. The most significant parameter is the gusset plate thickness with the gusset plate width being the second most important parameter. An empirical design equation is proposed.Key words: angles, buckling, columns (structural), compressive resistance, design equation, gusset plates.


Sign in / Sign up

Export Citation Format

Share Document