Modeling and theoretical investigation of curved parabolized surface of second-order velocity slip flow: Combined analysis of entropy generation and activation energy

2020 ◽  
Vol 34 (33) ◽  
pp. 2050383
Author(s):  
Sumaira Qayyum ◽  
M. Ijaz Khan ◽  
Wathek Chammam ◽  
W. A. Khan ◽  
Zulfiqar Ali ◽  
...  

Here our purpose is to explore the entropy generation in nanofluid MHD flow by curved stretching sheet; second-order slip is considered. Additional effects of viscous dissipation, Joule heating, and activation energy are taken. Temperature and concentration boundary conditions are considered convectively. For convergence of series solution NDSolve MATHEMATICA is used. Velocity, Bejan number, concentration, temperature, and entropy generation graphs are sketched for important parameters. For greater estimations of first- and second-order velocity slip parameters fluid velocity reduces. The thermal and solutal Biot numbers enhance the temperature and concentration, respectively. The concentration also has direct relation with activation energy. Entropy generation reduces for chemical reaction parameter and first- and second-order slip parameters.

2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110065
Author(s):  
Hu Ge-JiLe ◽  
Sumaira Qayyum ◽  
Faisal Shah ◽  
M Ijaz Khan ◽  
Sami Ullah Khan

The growing development in the thermal engineering and nano-technology, much attention has been paid on the thermal properties of nanoparticles which convey many applications in industrial, technological and medical era of sciences. The noteworthy applications of nano-materials included heat transfer enhancement, thermal energy, solar systems, cooling of electronics, controlling the heat mechanisms etc. Beside this, entropy generation is an optimized scheme which reflects significances in thermodynamics systems to control the higher energy efficiency. On this end, present work presents the slip flow of Jeffrey nanofluid over a stretching sheet with applications of activation energy and viscous dissipation. The entropy generation features along with Bejan number significance is also addressed in present analysis. Buongiorno model of nanofluid is used to discuss the heat and mass transfer. The formulated flow equations are attained into non-dimensional form. An appropriate ND MATHEMATICA built-in scheme is used to find the solution. The solution confirmation is verified by performing the error analysis. For developed flow model and impacted parameters, a comprehensive graphical analysis is performed. It is observed that slip phenomenon is used to decays the velocity profile. Temperature and concentration are in direct relation with Brownian motion parameter and activation energy respectively. Entropy and Bejan number have same results for greater diffusion parameter.


2018 ◽  
Vol 23 (2) ◽  
pp. 413-428 ◽  
Author(s):  
S. Jain ◽  
S. Bohra

Abstract In the present study, we have investigated entropy generation on a magnetohydrodynamic fluid flow and heat transfer over a stretching cylinder with a porous medium in slip flow regime. A uniform heat source and radiation is also considered. Similarity transformation has been applied for making an ordinary differential equation from nonlinear governing partial differential equations. The numerical solution for the set of nonlinear ordinary differential equations has been obtained by using the fourth-order Runge-Kutta scheme together with the shooting method. The effects of pertinent parameters such as the magnetic field parameter, permeability parameter, slip parameter, Prandtl number and radiation parameter on the fluid velocity distribution, temperature distribution, entropy generation and Bejan number are discussed graphically.


2021 ◽  
Vol 51 (4) ◽  
pp. 249-254
Author(s):  
Utpal Jyoti Das

The present paper examines the entropy generation on MHD flow of viscous fluid over a deformable vertical porous layer with constant injection/ suction velocity at the   boundary walls of the layer. The combined phenomenon of the solid deformation and fluid movement in the porous medium are taken into consideration. The influence of relevant non-dimensional parameters on the fluid velocity, solid displacement, temperature and concentration profiles are discussed. Also, the impact of Brinkman number, volume fraction parameter and drag parameter on entropy generation and Bejan number are discussed.


Author(s):  
M Ijaz Khan ◽  
Faris Alzahrani

Here magnetohydrodynamics Darcy–Forchheimer second order velocity slip flow of nanomaterials is discussed between two stretchable surfaces of rotating disks, where the both disks are rotating with altered angular frequencies and rates. Flow in permeable medium is designated by implementing Darcy–Forchheimer relation. The energy expression is discussed and modeled subject to various effects like dissipation, Ohmic heating (Joule heating), and heat source/sink. Two different types of nanoparticles, i.e. graphene oxide (GO) and titanium dioxide (TiO2), are utilized and H2O as a base fluid. Total entropy rate which depends on five different types of irreversibilities (i.e., heat, mass fluid friction, Ohmic heating and Darcy–Forchheimer or porosity) is calculated via thermodynamics law (second). Furthermore, binary chemical reaction is accounted for the analysis of mass with activation energy. Numerical solutions are found out with the help of shooting method. Behaviors of flow variables on the skin friction coefficients, velocity field, Nusselt numbers, temperature distribution, entropy generation, concentration, and Bejan number are plotted graphically and discussed. The results are compared with previous literature and found good agreement with them. Our obtained results illustrate that the entropy rate is more subject to rising Brinkman number.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sohaib Khan ◽  
Farhad Ali ◽  
Waqar A. Khan ◽  
Anees Imtiaz ◽  
Ilyas Khan ◽  
...  

AbstractIn the present article, we investigate the dual slip effect namely the velocity slip and thermal slip conditions on MHD flow past a thin needle. The entropy generation for the incompressible fluids that’s water and acetone that flowing above the thin needle is discussed. The energy dissipating term and the magnetic effect is included in the axial direction. The leading partial differential equations are transformed to ODE by an appropriate similarity transformation and solved using a numerical technique that is the Quasilinearization method. The terms for the rate of entropy generation, the Bejan number, and the irreversibility distribution ratio are discussed. Each dimensionless number is shown with velocity slip and also with the magnetic parameter is presented in graphical form. In the result, we conclude that the entropy generation rate is increasing with the increase in thermal slip parameter also some increasing effect is found as the size of the needle increases


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tarek N. Abdelhameed

AbstractThis article examines the entropy generation in the magnetohydrodynamics (MHD) flow of Newtonian fluid (water) under the effect of applied magnetic in the absence of an induced magnetic field. More precisely, the flow of water is considered past an accelerated plate such that the fluid is receiving constant heating from the initial plate. The fluid disturbance away from the plate is negligible, therefore, the domain of flow is considered as semi-infinite. The flow and heat transfer problem is considered in terms of differential equations with physical conditions and then the corresponding equations for entropy generation and Bejan number are developed. The problem is solved for exact solutions using the Laplace transform and finite difference methods. Results are displayed in graphs and tables and discussed for embedded flow parameters. Results showed that the magnetic field has a strong influence on water flow, entropy generation, and Bejan number.


2020 ◽  
Vol 8 ◽  
Author(s):  
K. Loganathan ◽  
G. Muhiuddin ◽  
A. M. Alanazi ◽  
Fehaid S. Alshammari ◽  
Bader M. Alqurashi ◽  
...  

The prime objective of this article is to explore the entropy analysis of third-order nanofluid fluid slip flow caused by a stretchable sheet implanted in a porous plate along with thermal radiation, convective surface boundary, non-Fourier heat flux applications, and nanoparticle concentration on zero mass flux conditions. The governing physical systems are modified into non-linear ordinary systems with the aid of similarity variables, and the outcomes are solved by a homotopy analysis scheme. The impression of certain governing flow parameters on the nanoparticle concentration, temperature, and velocity is illustrated through graphs, while the alteration of many valuable engineering parameters viz. the Nusselt number and Sherwood number are depicted in graphs. Entropy generation with various parameters is obtained and discussed in detail. The estimation of entropy generation using the Bejan number find robust application in power engineering and aeronautical propulsion to forecast the smartness of entire system.


2021 ◽  
Author(s):  
M R Acharya ◽  
P Mishra ◽  
Satyananda Panda

Abstract This paper analyses the augmentation entropy generation number for a viscous nanofluid flow over a non-isothermal wedge including the effects of non-linear radiation and activation energy. We discuss the influence of thermodynamically important parameters during the study, namely, the Bejan number, entropy generation number, and the augmentation entropy generation number. The mathematical formulation for thermal conductivity and viscosity of nanofluid for Al2O3 − EG mixture has been considered. The results were numerically computed using implicit Keller-Box method and depicted graphically. The important result is the change in augmentation entropy generation number with Reynolds number. We observed that adding nanoparticles (volume fraction) tend to enhance augmentation entropy generation number for Al2O3 − EG nanofluid. Further, the investigation on the thermodynamic performance of non-isothermal nanofluid flow over a wedge reveals that adding nanoparticles to the base fluid is effective only when the contribution of heat transfer irreversibility is more than fluid friction irreversibility. This work also discusses the physical interpretation of heat transfer irreversibility and pressure drop irreversibility. This dependency includes Reynolds number and volume fraction parameter. Other than these, the research looked at a variety of physical characteristics associated with the flow of fluid, heat and mass transfer.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
M. Ijaz Khan ◽  
Sumaira Qayyum ◽  
T. Hayat ◽  
M. Waqas ◽  
A. Alsaedi

Abstract This paper aims to investigate the entropy generation in slip flow due to double rotating disks. Heat equation is formulated by considering effects of viscous dissipation, Joule heating and nonlinear thermal radiation. Brownian motion and thermophoresis effects of nanofluid are also discussed. Applied magnetic field is considered to be time dependent. Homogeneous–heterogeneous reactions are also studied. Von Karman transformations are used. Homotopy analysis method is implemented on system of equations for convergent series solutions. Influence of various flow parameters on entropy, Bejan number, velocity, temperature, Nusselt number, and skin friction is discussed through graphs and tables. Axial velocity decays for higher nonlinear mixed convection variable of temperature and velocity slip parameter. Temperature rises for larger thermal slip parameter and thermophoresis parameter. Entropy and Bejan number are increasing for higher estimation of homogeneous reaction parameter and diffusion parameters.


Sign in / Sign up

Export Citation Format

Share Document