Mechanistic studies on the role of TGF-β1 in angiogenesis through EndMT

Vascular ◽  
2020 ◽  
pp. 170853812095366
Author(s):  
Sheng-Jun Cao ◽  
Lei Hong ◽  
Xiao-Qiang Li

Objective This study aims to investigate the mechanism of transforming growth factor-β1 (TGF-β1) in promoting angiogenesis through endothelial-to-mesenchymal transition (EndMT). Methods The mesenchymal transition of human umbilical vein endothelial cells (HUVECs) was induced by TGF-β1. The angiogenesis, migration, and proliferation of HUVECs undergoing EndMT were examined by tube formation assay, scratch assay, Transwell assay, and CCK-8 assay. Results The outcomes revealed that EndMT promoted angiogenesis, migration, and proliferation of HUVECs and the secretion of the vascular endothelial growth factor (VEGF) of HUVECs. Phosphorylated AKT (p-AKT) increased in EndMT by inhibiting the mitigation of angiogenesis. Conclusion EndMT induces angiogenesis by promoting the secretion of VEGF, and p-AKT participates in this regulation.

2021 ◽  
Vol 11 (19) ◽  
pp. 9128
Author(s):  
Jwa-Young Kim ◽  
Dae-Won Kim ◽  
Suk Keun Lee ◽  
Je-Yong Choi ◽  
Xiangguo Che ◽  
...  

In our previous study, 4-hexylresorcinol (4HR) increased the expression level of vascular endothelial growth factor in human umbilical vein endothelial cells (HUVECs) via the transforming growth factor-β1 (TGF-β1)-mediated pathway. Endoplasmic reticulum (ER) and mitochondrial stress is a positive regulator of cellular differentiation. As TGF-β1 is a master regulator for cellular differentiation, 4HR treatment may increase TGF-β1 expression via ER stress. In this study, HUVECs were treated using 4HR (1–100 μM) for 24 h. The 4HR treatment increased ER stress-associated markers and mitochondrial stress. Increased TGF-β1 expression by 4HR administration was alleviated by tauroursodeoxycholate (ER stress inhibitor) treatment. Combining these activities with the elevated acetylation level of histone 3 (H3) by 4HR treatment, TGF-β1 expression was increased in HUVECs. Overall, 4HR increased TGF-β1 expression through upregulation of the stress response of ER as well as H3 acetylation in HUVECs.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Xianglin Hu ◽  
Zhengwang Sun ◽  
Fengfeng Li ◽  
Chaoyin Jiang ◽  
Wangjun Yan ◽  
...  

AbstractBurn injury is one of the potential causes of heterotopic ossification (HO), which is a rare but debilitating condition. The incidence ranges from 3.5 to 5.6 depending on body area. Burns that cover a larger percentage of the total body surface area (TBSA), require skin graft surgeries, or necessitate pulmonary intensive care are well-researched risk factors for HO. Since burns initiate such complex pathophysiological processes with a variety of molecular signal changes, it is essential to focus on HO in the specific context of burn injury to define best practices for its treatment. There are numerous key players in the pathways of burn-induced HO, including neutrophils, monocytes, transforming growth factor-β1-expressing macrophages and the adaptive immune system. The increased inflammation associated with burn injuries is also associated with pathway activation. Neurological and calcium-related contributions are also known. Endothelial-to-mesenchymal transition (EMT) and vascularization are known to play key roles in burn-induced HO, with hypoxia-inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) as potential initiators. Currently, non-steroidal anti-inflammatory drugs (NSAIDs) and radiotherapy are effective prophylaxes for HO. Limited joint motion, ankylosis and intolerable pain caused by burn-induced HO can be effectively tackled via surgery. Effective biomarkers for monitoring burn-induced HO occurrence and bio-prophylactic and bio-therapeutic strategies should be actively developed in the future.


1995 ◽  
Vol 73 (05) ◽  
pp. 812-818 ◽  
Author(s):  
Taro Ohji ◽  
Hajime Urano ◽  
Akira Shirahata ◽  
Minoru Yamagishi ◽  
Ken Higashi ◽  
...  

SummaryTo investigate the effects of transforming growth factor-betas (TGF-βs) on endothelial anticoagulant activity, we assayed thrombomodulin (TM) activity and antigen levels of human umbilical vein endothelial cells (HUVECs) incubated with TGF-βs in vitro. TGF-β1 suppressed surface TM activity and surface TM antigen levels maximally 12 h after incubation in dose-dependent manners. TGF-β2 was almost equipotent with TGF-β1 for the suppression of them. Both TGF-βs suppressed total TM antigen level in HUVECs, and the time course of the suppression was similar to that of the cell surface TM antigen level. The maximal reductions of TM mRNA levels by TGF-βs were observed at several hours ahead of those observed in both surface and total TM antigen levels, suggesting that the TGF-β-mediated suppression of TM antigen of HUVECs is primarily regulated at the TM mRNA level. Our present work suggests that the down-modulation of TM level induced by TGF-βs in HUVECs contributes in vivo to promoting the thrombogenesis either at the sites of injury of vessel walls, such as atherosclerotic lesions where TGF-β1 is released from platelets, smooth muscle cells and monocytes, or at neovascular walls in tumors secreting TGF-β2.


Biology ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 84 ◽  
Author(s):  
Kim ◽  
Park ◽  
Kim ◽  
Leem ◽  
Park

Recent studies showed that melatonin, a well-known pineal hormone that modulates the circadian rhythm, exerts beneficial effects against liver fibrosis. However, mechanisms for its protective action against the fibrotic processes remain incompletely understood. Here, we aimed to explore the effects of the hormone on transforming growth factor-β1 (TGF-β1)-stimulated epithelial–mesenchymal transition (EMT) in AML12 hepatocytes. Pretreatment with melatonin dose-dependently reversed downregulation of an epithelial marker and upregulation of mesenchymal markers after TGF-β1 stimulation. Additionally, melatonin dose-dependently suppressed an increased phosphorylation of Smad2/3 after TGF-β1 treatment. Besides the canonical Smad signaling pathway, an increase in phosphorylation of extracellular signal-regulated kinase 1/2 and p38 was also dose-dependently attenuated by melatonin. The suppressive effect of the hormone on EMT stimulated by TGF-β1 was not affected by luzindole, an antagonist of melatonin membrane receptors, suggesting that its membrane receptors are not required for the inhibitory action of melatonin. Moreover, melatonin suppressed elevation of intracellular reactive oxygen species (ROS) levels in TGF-β1-treated cells. Finally, TGF-β1-stimulated EMT was also inhibited by the antioxidant N-acetylcysteine. Collectively, these results suggest that melatonin prevents TGF-β1-stimulated EMT through suppression of Smad and mitogen-activated protein kinase signaling cascades by deactivating ROS-dependent mechanisms in a membrane receptor-independent manner.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 865 ◽  
Author(s):  
Tsai ◽  
Lin ◽  
Hang ◽  
Chen

Doxorubicin (Dox) is an effective anti-neoplasm drug, but its cardiac toxicity limits its clinical use. Endothelial-to-mesenchymal transition (EndMT) has been found to be involved in the process of heart failure. It is unclear whether EndMT contributes to Dox-induced cardiomyopathy (DoIC). Calcitriol, an active form Vitamin D3, blocks the growth of cancer cells by inhibiting the Smad pathway. To investigate the effect of calcitriol via inhibiting EndMT in DoIC, C57BL/6 mice and endothelial-specific labeled mice were intraperitoneally administered Dox twice weekly for 4 weeks (32 mg/kg cumulative dose) and were subsequently treated with or without calcitriol for 12 weeks. Echocardiography revealed diastolic dysfunction at 13 weeks following the first Dox treatment, accompanied by increased myocardial fibrosis and up-regulated pro-fibrotic proteins. Calcitriol attenuated Dox-induced myocardial fibrosis, down-regulated pro-fibrotic proteins and improved diastolic function. Endothelial fate tracing revealed that EndMT-derived cells contributed to Dox-induced cardiac fibrosis. In vitro, human umbilical vein endothelial cells and mouse cardiac fibroblasts were treated with Transforming growth factor (TGF)-β with or without calcitriol. Morphological, immunofluorescence staining, and Western blot analyses revealed that TGF-β-induced EndMT and fibroblast-to-myofibroblast transition (FMT) were attenuated by calcitriol by the inhibition of the Smad2 pathway. Collectively, calcitriol attenuated DoIC through the inhibition of the EndMT and FMT processes.


2015 ◽  
Vol 25 (9) ◽  
pp. 1574-1581 ◽  
Author(s):  
Zhongxue Ye ◽  
Le Zhao ◽  
Jie Li ◽  
Wei Chen ◽  
Xu Li

ObjectiveMicroRNAs (miRs) are essential regulators of gene expression by suppressing translation or causing degradation of target mRNA. Growing evidence sheds light on the crucial roles of miR dysregulation in cancer development and progression. In this study, we focused on the role of miR-30d in transforming growth factor β1 (TGF-β1)–initiated epithelial-mesenchymal transition (EMT) in ovarian cancer cells.MethodsTransforming growth factor β1 (10 ng/mL) was used to initiate EMT in SKOV3 and 3AO cells. The expression of miR-30 family members was determined by quantitative real-time polymerase chain reaction. Messenger RNA and protein levels of E-cadherin, N-cadherin, vimentin, and Snail were detected by quantitative real-time polymerase chain reaction and Western blot, respectively. Cell migration and invasion capacities were evaluated by Transwell chamber assay. Luciferase activity assay was performed to verify the direct inhibition of Snail by miR-30d.ResultsMiR-30b, MiR-30c, and MiR-30d were down-regulated during TGF-β1–induced EMT in SKOV3 and 3AO ovarian cancer cells. Restoration of miR-30d by miR-30d mimic reversed TGF-β1–induced EMT phenotypes including the morphological changes, expression pattern of molecular markers (E-cadherin, N-cadherin), and migratory and invasive capabilities in ovarian cancer cells. Furthermore, Snail was identified as the direct target of miR-30d.ConclusionsOur results revealed that miR-30d functioned as a suppressor of ovarian cancer progression by decreasing Snail expression and thus blocking TGF-β1–induced EMT process, suggesting the potentiality of miR-30d analogs to be used as therapeutics for ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document