From coordination polymer to carbon nanotube: Preparation, characterization and rapid adsorption capacity toward organic pollutants

2020 ◽  
Vol 44 (7-8) ◽  
pp. 487-493
Author(s):  
Hong-Yan Lin ◽  
Yi-Fei Wang ◽  
Yuan Tian ◽  
Guo-Cheng Liu ◽  
Jian Luan

A CuI coordination polymer based on the N,N’-bis(3-pyridinecarboxamide)-1,4-butane (3-dpyb) ligand, namely [Cu(3-dpyb)0.5Cl], is hydrothermally synthesized and structurally characterized, and is used as a catalyst precursor to synthesize multi-walled carbon nanotubes. Interestingly, the as-grown multi-walled carbon nanotubes exhibit high performance in removing dyes from solution and can serve as a low-cost and fast adsorbent. In addition, the adsorption behavior of this new adsorbent fits well with the Freundlich isotherm and the pseudo-second-order kinetic model.

Author(s):  
Yaofeng Wang ◽  
Fan Wang ◽  
Yang Kong ◽  
Lei Wang ◽  
Qinchuan Li

Abstract High-performance bioartificial muscles with low-cost, large bending deformation, low actuation voltage, and fast response time have drawn extensive attention as the development of human-friendly electronics in recent years. Here, we report a high-performance ionic bioartificial muscle based on the bacterial cellulose (BC)/ionic liquid (IL)/multi-walled carbon nanotubes (MWCNT) nanocomposite membrane and PEDOT:PSS electrode. The developed ionic actuator exhibits excellent electro-chemo-mechanical properties, which are ascribed to its high ionic conductivity, large specific capacitance, and ionically crosslinked structure resulting from the strong ionic interaction and physical crosslinking among BC, IL, and MWCNT. In particular, the proposed BC-IL-MWCNT (0.10 wt%) nanocomposite exhibited significant increments of Young's modulus up to 75% and specific capacitance up to 77%, leading to 2.5 times larger bending deformation than that of the BC-IL actuator. More interestingly, bioinspired applications containing artificial soft robotic finger and grapple robot were successfully demonstrated based on high-performance BC-IL-MWCNT actuator with excellent sensitivity and controllability. Thus, the newly proposed BC-IL-MWCNT bioartificial muscle will offer a viable pathway for developing next-generation artificial muscles, soft robotics, wearable electronic products, flexible tactile devices, and biomedical instruments.


Author(s):  
Francisco J. Alguacil ◽  
Félix A. López

The present investigation deals with the adsorption of chromium(III) from alkaline media using multi-walled carbon nanotubes. The adsorption of Cr(III) has been studied under various experimental conditions: stirring speed of the aqueous solution, initial metal and adsorbent concentrations, NaOH concentration in the aqueous solution, and temperature. The rate law indicated that chromium adsorption is well represented by the particle diffusion model, whereas the adsorption process fits to the pseudo-second order kinetic model within an exothermic character. Equilibrium data fit to the Langmuir type-2 equilibrium isotherm in an spontaneous process. Chromium(III) can be eluted from metal-loaded nanotubes using acidic solutions, from which fine chromium(III) oxide pigment can be ultimately yielded.


2017 ◽  
Vol 76 (2) ◽  
pp. 302-310 ◽  
Author(s):  
Ying Zhou ◽  
Jingang Yu ◽  
Xinyu Jiang

A novel multi-walled carbon nanotubes (MWCNTs) material functionalized with thiosemicarbazide was synthesized successfully and used to remove lead ions from aqueous solutions. The technologies of Fourier Transform Infrared Spectroscopy, scanning electron microscopy and thermal gravimetric analysis were used to characterize the structure and properties of thiosemicarbazide grafted MWCNTs. The adsorption conditions, such as pH, contact time and temperature, were investigated. The results showed pH affected the adsorption process greatly, and the adsorption process reached equilibrium within 60 min. The maximum adsorption capacity was 42.01 mg/g. The adsorption process fitted well with the pseudo-second-order kinetic model and the Langmuir model. The thermodynamic parameters indicated the adsorption process was endothermic and spontaneous in nature.


2015 ◽  
Vol 3 (41) ◽  
pp. 20690-20697 ◽  
Author(s):  
Huaping Chen ◽  
Yufei Zhang ◽  
Jun Yang ◽  
Ziyang Dai ◽  
Nina Fu ◽  
...  

A template-free two-step strategy is successfully developed for the low-cost one pot production of Ni0.33Co0.66(OH)F hollow hexagons woven by multi-walled carbon nanotubes (MWCNTs).


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2757 ◽  
Author(s):  
Christian De Benedetto ◽  
Anastasia Macario ◽  
Carlo Siciliano ◽  
Janos B. Nagy ◽  
Pierantonio De Luca

The multi-walled carbon nanotubes obtained by catalytic chemical vapour deposition synthesis are used as a solid matrix for the adsorption of the Reactive Blue 116 dye and the Reactive Yellow 81 dye from aqueous solutions at different pH values. The batch tests carried out allowed us to investigate the different effects of pH (2, 4, 7, 9 and 12) and of the contact time (2.5 ÷ 240 min) used. The liquid phase was analysed using ultraviolet-visible spectrophotometry in order to characterise the adsorption kinetics, the transport mechanisms and the adsorption isotherms. The adsorption of the optimal dye was observed at pH 2 and 12. The pseudo-first order kinetic model provided the best approximation of experimental data compared to the pseudo-second order kinetic model. The predominant transport mechanism investigated with the Weber and Morris method was molecular diffusion for both Reactive Yellow 81 and Reactive Blue 116, and the equilibrium data were better adapted to the Langmuir isothermal model. The maximum adsorption capacity for Reactive Yellow 81 and Reactive Blue 116 occurred with values of 33.859 mg g−1 and 32.968 mg g−1, respectively.


2015 ◽  
Vol 1088 ◽  
pp. 13-17 ◽  
Author(s):  
Han Hao ◽  
Jian Guo Feng ◽  
Wen Jun Liu ◽  
Xue Min Wu

Multi-walled carbon nanotubes (MWCNT) were used as an efficient adsorbent to remove Paraquat (PQ) molecules from its aqueous solutions. The initial PQ concentration, adsorption time and temperature had considerable effect on the removal of PQ onto MWCNT. The adsorption of PQ onto MWCNT followed the pseudo second-order kinetic model involving the particle-diffusion mechanism. The adsorption isotherms were fitted by the Langmuir isotherm, with the maximum adsorption capacity based on the former of 79.365 mg·g-1. Thermodynamic parameters, including Gibbs free energy changes (ΔG0), as well as changes in enthalpy (ΔH0) and entropy (ΔS0), were also calculated. The results demonstrated that PQ was adsorbed onto MWCNT spontaneously and endothermically in nature.


Sign in / Sign up

Export Citation Format

Share Document