Effect of stud shape on lower limb kinetics during football-related movements

Author(s):  
Xiang Lv ◽  
Yuqi He ◽  
Dong Sun ◽  
Julien S Baker ◽  
Rongrong Xuan ◽  
...  

Different football shoe designs used under the same turf condition can impact athletic performance and influence the risk of injury. The purpose of this study was to investigate the effect of different shape studs of football shoes on lower limb kinetics during straight-ahead running and 45° left sidestep cutting movements. Twelve male football players were recruited from university football teams. They were asked to perform six trials using straight-ahead running and a 45° left sidestep cutting movement on artificial turf while wearing football shoes with the following three stud configurations: knife stud, triangle stud and round stud. The contact time of knife stud was longer than triangle stud and round stud. In the straight-ahead running task, the ground force in the direction of movement of knife stud and round stud was lower than triangle stud. The peak pressure on the lateral forefoot (5 metatarsal region) in knife stud was higher than triangle stud and round stud in the cutting movements. The peak pressure and force–time integral on the medial (1 metatarsal region) and central (2–4 metatarsal region) forefoot in triangle stud were smaller than round stud. The different stud shapes of firm ground soccer shoes have little effect on the traction force. Knife stud has a higher risk of fifth metatarsal bone injury. The triangle stud shows good explosive force and provides the ability to change direction quickly. The round stud generally produces the minimum peak vertical ground reaction force and has a good capability of changing direction among the three shoes.

2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


Author(s):  
Kenneth P. Clark ◽  
Andrew B. Udofa ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Running impact forces have immediate relevance for the muscle tuning paradigm proposed here and broader relevance for overuse injuries, shoe design and running performance. Here, we consider their mechanical basis. Several studies demonstrate that the vertical ground reaction force-time (vGRFT) impulse, from touchdown to toe-off, corresponds to the instantaneous accelerations of the body’s entire mass (Mb) divided into two or more portions. The simplest, a two-mass partitioning of the body (lower-limb, M1=0.08•Mb; remaining mass, M2=0.92•Mb) can account for the full vGRFT waveform under virtually all constant-speed, level-running conditions. Model validation data indicate that: 1) the non-contacting mass, M2, often accounts for one-third or more of the early “impact” portion of the vGRFT, and 2) extracting a valid impact impulse from measured force waveforms requires only lower-limb motion data and the fixed body mass fraction of 0.08 for M1.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12481
Author(s):  
Yuqi He ◽  
Dong Sun ◽  
Xiaoyi Yang ◽  
Gusztáv Fekete ◽  
Julien S. Baker ◽  
...  

Background Biomechanical footwork research during table tennis performance has been the subject of much interest players and exercise scientists. The purpose of this study was to investigate the lower limb kinetic characteristics of the chasse step and one step footwork during stroke play using traditional discrete analysis and one-dimensional statistical parameter mapping. Methods Twelve national level 1 table tennis players (Height: 172 ± 3.80 cm, Weight: 69 ± 6.22 kg, Age: 22 ± 1.66 years, Experience: 11 ± 1.71 year) from Ningbo University volunteered to participate in the study. The kinetic data of the dominant leg during the chasse step and one step backward phase (BP) and forward phase (FP) was recorded by instrumented insole systems and a force platform. Paired sample T tests were used to analyze maximum plantar force, peak pressure of each plantar region, the force time integral and the pressure time integral. For SPM analysis, the plantar force time series curves were marked as a 100% process. A paired-samples T-test in MATLAB was used to analyze differences in plantar force. Results One step produced a greater plantar force than the chasse step during 6.92–11.22% BP (P = 0.039). The chasse step produced a greater plantar force than one step during 53.47–99.01% BP (P < 0.001). During the FP, the chasse step showed a greater plantar force than the one step in 21.06–84.06% (P < 0.001). The one step produced a higher maximum plantar force in the BP (P = 0.032) and a lower maximum plantar force in the FP (P = 0) compared with the chasse step. The one step produced greater peak pressure in the medial rearfoot (P = 0) , lateral rearfoot (P = 0) and lateral forefoot (P = 0.042) regions than the chasse step during BP. In FP, the chasse step showed a greater peak pressure in the Toe (P = 0) than the one step. The one step had a lower force time integral (P = 0) and greater pressure time integral (P = 0) than the chasse step in BP, and the chasse step produced a greater force time integral (P = 0) and pressure time integral (P = 0.001) than the one step in the FP. Conclusion The findings indicate that athletes can enhance plantarflexion function resulting in greater weight transfer, facilitating a greater momentum during the 21.06–84.06% of FP. This is in addition to reducing the load on the dominant leg during landing by utilizing a buffering strategy. Further to this, consideration is needed to enhance the cushioning capacity of the sole heel and the stiffness of the toe area.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5297
Author(s):  
Ka-Wing Cheng ◽  
Yinghu Peng ◽  
Tony Lin-Wei Chen ◽  
Guoxin Zhang ◽  
James Chung-Wai Cheung ◽  
...  

The advancement of 3D printing and scanning technology enables the digitalization and customization of foot orthosis with better accuracy. However, customized insoles require rectification to direct control and/or correct foot deformity, particularly flatfoot. In this exploratory study, we aimed at two design rectification features (arch stiffness and arch height) using three sets of customized 3D-printed arch support insoles (R+U+, R+U−, and R−U+). The arch support stiffness could be with or without reinforcement (R+/−) and the arch height may or may not have an additional elevation, undercutting (U+/−), which were compared to the control (no insole). Ten collegiate participants (four males and six females) with flexible flatfoot were recruited for gait analysis on foot kinematics, vertical ground reaction force, and plantar pressure parameters. A randomized crossover trial was conducted on the four conditions and analyzed using the Friedman test with pairwise Wilcoxon signed-rank test. Compared to the control, there were significant increases in peak ankle dorsiflexion and peak pressure at the medial midfoot region, accompanied by a significant reduction in peak pressure at the hindfoot region for the insole conditions. In addition, the insoles tended to control hindfoot eversion and forefoot abduction though the effects were not significant. An insole with stronger support features (R+U+) did not necessarily produce more favorable outcomes, probably due to over-cutting or impingement. The outcome of this study provides additional data to assist the design rectification process. Future studies should consider a larger sample size with stratified flatfoot features and covariating ankle flexibility while incorporating more design features, particularly medial insole postings.


2020 ◽  
Vol 7 (8) ◽  
pp. 192093
Author(s):  
Sofyan B. Sahrom ◽  
Jodie C. Wilkie ◽  
Kazunori Nosaka ◽  
Anthony J. Blazevich

Detailed examinations of both the movement and muscle activation patterns used by animals and humans to complete complex tasks are difficult to obtain in many environments. Therefore, the ability to infer movement and muscle activation patterns after capture of a single set of easily obtained data is highly sought after. One possible solution to this problem is to capture force-time data through the use of appropriate transducers, then interrogate the signal's derivative, the yank-time signal, which amplifies, and thus highlights, temporal force-time changes. Because the countermovement vertical jump (CMJ) is a complex movement that has been well studied in humans, it provides an excellent preliminary model to test the validity of this solution. The aim of the present study was therefore to explore the use of yank-time signal, derived from vertical ground reaction force-time data, to identify and describe important kinematic (captured using three-dimensional motion analysis) and kinetic events in the CMJ, and to relate these to possible muscle activation (electromyography) events that underpin them. It was found that the yank-time signal could be used to accurately identify several key events during the CMJ that are likely to be missed or misidentified when only force-time data are inspected, including the first instances of joint flexion and centre of mass movement. Four different jump profiles (i.e. kinematic patterns) were inferred from the yank-time data, which were linked to different patterns of muscle activation. Therefore, yank-time signal interrogation provides a viable method of estimating kinematic patterns and muscle activation strategies in complex human movements.


Sports ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 159
Author(s):  
Trent M. Guess ◽  
Aaron D. Gray ◽  
Brad W. Willis ◽  
Matthew M. Guess ◽  
Seth L. Sherman ◽  
...  

The purpose of this study was to relate the shape of countermovement jump (CMJ) vertical ground reaction force waveforms to discrete parameters and determine if waveform shape could enhance CMJ analysis. Vertical ground reaction forces during CMJs were collected for 394 male and female collegiate athletes competing at the National Collegiate Athletic Association (NCAA) Division 1 and National Association of Intercollegiate Athletics (NAIA) levels. Jump parameters were calculated for each athlete and principal component analysis (PCA) was performed on normalized force-time waveforms consisting of the eccentric braking and concentric phases. A K-means clustering of PCA scores placed athletes into three groups based on their waveform shape. The overall average waveforms of all athletes in each cluster produced three distinct vertical ground reaction force waveform patterns. There were significant differences across clusters for all calculated jump parameters. Athletes with a rounded single hump shape jumped highest and quickest. Athletes with a plateau at the transition between the eccentric braking and concentric phase (amortization) followed by a peak in force near the end of the concentric phase had the lowest jump height and slowest jump time. Analysis of force-time waveform shape can identify differences in CMJ strategies in collegiate athletes.


Author(s):  
Isaac Estevan ◽  
Gonzalo Monfort-Torres ◽  
Roman Farana ◽  
David Zahradnik ◽  
Daniel Jandacka ◽  
...  

(1) Background: Understanding children’s motor patterns in landing is important not only for sport performance but also to prevent lower limb injury. The purpose of this study was to analyze children’s lower limb joint angles and impact force during single-leg landings (SLL) in different types of jumping sports using statistical parametric mapping (SPM). (2) Methods: Thirty children (53.33% girls, M = 10.16 years-old, standard deviation (SD) = 1.52) divided into three groups (gymnastics, volleyball and control) participated in the study. The participants were asked to do SLLs with the dominant lower limb (barefoot) on a force plate from a height of 25 cm. The vertical ground reaction force (GRF) and lower limb joint angles were assessed. SPM{F} one-way analysis of variance (ANOVA) and SPM{t} unpaired t-tests were performed during the landing and stability phases. (3) Results: A significant main effect was found in the landing phase of jumping sport practice in GRF and joint angles. During the stability phase, this effect was exhibited in ankle and knee joint angles. (4) Conclusions: Evidence was obtained of the influence of practicing a specific sport in childhood. Child volleyball players performed SLL with lower impact force and higher knee flexion than child gymnasts. Training in specific jumping sports (i.e., volleyball and gymnastics) could affect the individual capacity to adapt SLL execution.


2016 ◽  
Vol 11 (4) ◽  
pp. 522-529 ◽  
Author(s):  
Nicola Giovanelli ◽  
Paolo Taboga ◽  
Enrico Rejc ◽  
Bostjan Simunic ◽  
Guglielmo Antonutto ◽  
...  

Purpose:To investigate the effects of an uphill marathon (43 km, 3063-m elevation gain) on running mechanics and neuromuscular fatigue in lower-limb muscles.Methods:Maximal mechanical power of lower limbs (MMP), temporal tensiomyographic (TMG) parameters, and muscle-belly displacement (Dm) were determined in the vastus lateralis muscle before and after the competition in 18 runners (age 42.8 ± 9.9 y, body mass 70.1 ± 7.3 kg, maximal oxygen uptake 55.5 ± 7.5 mL · kg−1 · min−1). Contact (tc) and aerial (ta) times, step frequency (f), and running velocity (v) were measured at 3, 14, and 30 km and after the finish line (POST). Peak vertical ground-reaction force (Fmax), vertical displacement of the center of mass (Δz), leg-length change (ΔL), and vertical (kvert) and leg (kleg) stiffness were calculated.Results:MMP was inversely related with race time (r = –.56, P = .016), tc (r = –.61, P = .008), and Δz (r = –.57, P = .012) and directly related with Fmax (r = .59, P = .010), ta (r = .48, P = .040), and kvert (r = .51, P = .027). In the fastest subgroup (n = 9) the following parameters were lower in POST (P < .05) than at km 3: ta (–14.1% ± 17.8%), Fmax (–6.2% ± 6.4%), kvert (–17.5% ± 17.2%), and kleg (–11.4% ± 10.9%). The slowest subgroup (n = 9) showed changes (P < .05) at km 30 and POST in Fmax (–5.5% ± 4.9% and –5.3% ± 4.1%), ta (–20.5% ± 16.2% and –21.5% ± 14.4%), tc (5.5% ± 7.5% and 3.2% ± 5.2%), kvert (–14.0% ± 12.8% and –11.8% ± 10.0%), and kleg (–8.9% ± 11.5% and –11.9% ± 12%). TMG temporal parameters decreased in all runners (–27.35% ± 18.0%, P < .001), while Dm increased (24.0% ± 35.0%, P = .005), showing lower-limb stiffness and higher muscle sensibility to the electrical stimulus.Conclusions:Greater MMP was related with smaller changes in running mechanics induced by fatigue. Thus, lower-limb power training could improve running performance in uphill marathons.


Sign in / Sign up

Export Citation Format

Share Document