scholarly journals Modelling of combustion acoustics sources and their dynamics in the PRECCINSTA burner test case

2017 ◽  
Vol 9 (4) ◽  
pp. 330-348 ◽  
Author(s):  
Felix Grimm ◽  
Jürgen Dierke ◽  
Roland Ewert ◽  
Berthold Noll ◽  
Manfred Aigner

A stochastic, hybrid computational fluid dynamics/computational combustion acoustics approach for combustion noise prediction is applied to the PRECCINSTA laboratory scale combustor (prediction and control of combustion instabilities in industrial gas turbines). The numerical method is validated for its ability to accurately reproduce broadband combustion noise levels from measurements. The approach is based on averaged flow field and turbulence statistics from computational fluid dynamics simulations. The three-dimensional fast random particle method for combustion noise prediction is employed for the modelling of time-resolved dynamics of sound sources and sound propagation via linearised Euler equations. A comprehensive analysis of simulated sound source dynamics is carried out in order to contribute to the understanding of combustion noise formation mechanisms. Therefrom gained knowledge can further on be incorporated for the investigation of onset of thermoacoustic phenomena. The method-inherent stochastic Langevin ansatz for the realisation of turbulence related source decay is analysed in terms of reproduction ability of local one- and two-point statistical input and therefore its applicability to complex test cases. Furthermore, input turbulence statistics are varied, in order to investigate the impact of turbulence on the resulting sound pressure spectra for a swirl stabilised, technically premixed combustor.

Author(s):  
Felix Grimm ◽  
Duncan Ohno ◽  
Berthold Noll ◽  
Manfred Aigner ◽  
Roland Ewert ◽  
...  

Combustion noise in the laboratory scale PRECCINSTA (prediction and control of combustion instabilities in industrial gas turbines) burner is simulated with a new, robust, and highly efficient approach for combustion noise prediction. The applied hybrid method FRPM-CN (fast-random particle method for combustion noise prediction) relies on a stochastic, particle-based sound source reconstruction approach. Turbulence statistics from reacting CFD-RANS (computational fluid dynamics–Reynolds-Averaged Navier–Stokes) simulations are used as input for the stochastic method, where turbulence is synthesized based on a first-order Langevin ansatz. Sound propagation is modeled in the time domain with a modified set of linearized Euler equations and monopole sound sources are incorporated as right-hand side forcing of the pressure equation at every timestep of the acoustics simulations. First, the reacting steady-state CFD simulations are compared to experimental data, showing very good agreement. Subsequently, the computational combustion acoustics (CCA) setup is introduced, followed by comparisons of numerical with experimental pressure spectra. It is shown that FRPM-CN accurately captures absolute combustion noise levels without any artificial correction. Benchmark runs show that the computational costs of FRPM-CN are much lower than that of direct simulation approaches. The robustness and reliability of the method is demonstrated with parametric studies regarding source grid refinement, the choice of either RANS or URANS statistics, and the employment of different global reaction mechanisms.


Author(s):  
Felix Grimm ◽  
Duncan Ohno ◽  
Roland Ewert ◽  
Jürgen Dierke ◽  
Berthold Noll ◽  
...  

Combustion noise in the laboratory scale PRECCINSTA burner is simulated with a new, robust and highly efficient approach for combustion noise prediction. The applied hybrid method FRPM-CN (Fast Random Particle Method for Combustion Noise prediction) relies on a stochastic, particle based sound source reconstruction approach. Turbulence statistics from reacting CFD-RANS simulations are used as input for the stochastic method, where turbulence is synthesized based on a first order Langevin ansatz. Sound propagation is modeled in the time domain with a modified set of linearized Euler equations and monopole sound sources are incorporated as right hand side forcing of the pressure equation at every timestep of the acoustics simulations. First, reacting steady state CFD simulations are compared to experimental data, showing very good agreement. Subsequently, the computational combustion acoustics setup is introduced, followed by comparisons of numerical with experimental pressure spectra. It is shown that FRPM-CN accurately captures absolute combustion noise levels without any artificial correction. Benchmark runs show that the computational costs of FRPM-CN are much lower than that of direct simulation approaches. The robustness and reliability of the method is demonstrated with parametric studies regarding source grid refinement, the choice of either RANS or URANS statistics and the employment of different global reaction mechanisms.


Author(s):  
Praween Senanayake ◽  
Hana Salati ◽  
Eugene Wong ◽  
Kimberley Bradshaw ◽  
Yidan Shang ◽  
...  

Author(s):  
Felix Grimm ◽  
Roland Ewert ◽  
Jürgen Dierke ◽  
Berthold Noll ◽  
Manfred Aigner

A new highly efficient, hybrid CFD/CAA approach for broadband combustion noise modeling is introduced. The inherent sound source generation mechanism is based on turbulent flow field statistics, which are determined from reacting RANS calculations. The generated sources form the right-hand side of the linearized Euler equations for the calculation of sound fields. The stochastic time-domain source reconstruction algorithm is briefly described with emphasis on two different ways of spatial discretization, RPM (Random Particle Method) and the newly developed FRPM (Fast RPM). The application of mainly the latter technique to combustion noise (CN) prediction and several methodical progressions are presented in the paper. (F)RPM-CN is verified in terms of its ability to accurately reproduce prescribed turbulence-induced one- and two-point statistics for a generic test and the DLR-A jet flame validation case. Former works on RPM-CN have been revised and as a consequence methodical improvements are introduced along with the progression to FRPM-CN: A canonical CAA setup for the applications DLR-A, -B and H3 flame is used. Furthermore, a second order Langevin decorrelation model is introduced for FRPM-CN, to avoid spurious high frequency noise. A new calibration parameter set for reacting jet noise prediction with (F)RPM-CN is proposed. The analysis shows the universality of the data set for 2D jet flame applications and furthermore the method’s accountance for Reynolds scalability. In this context, a Mach number scaling law is used to conserve Strouhal similarity of the jet flame spectra. Finally, the numerical results are compared to suitable similarity spectra.


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


2005 ◽  
Vol 127 (1) ◽  
pp. 5-13 ◽  
Author(s):  
J. H. Horlock ◽  
J. D. Denton

In the early development of gas turbines, many empirical design rules were used; for example in obtaining fluid deflection using the deviation from blading angles, in the assumption of zero radial velocities (so-called radial equilibrium) and in expressions for clearance loss (the Lakshminarayana formulas). The validity of some of these rules, and the basic fluid mechanics behind them, is examined by use of modern ideas and computational fluid dynamics (CFD) codes. A current perspective of CFD in design is given, together with a view on future developments.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Andrea Acuna ◽  
Alycia G. Berman ◽  
Frederick W. Damen ◽  
Brett A. Meyers ◽  
Amelia R. Adelsperger ◽  
...  

Recent applications of computational fluid dynamics (CFD) applied to the cardiovascular system have demonstrated its power in investigating the impact of hemodynamics on disease initiation, progression, and treatment outcomes. Flow metrics such as pressure distributions, wall shear stresses (WSS), and blood velocity profiles can be quantified to provide insight into observed pathologies, assist with surgical planning, or even predict disease progression. While numerous studies have performed simulations on clinical human patient data, it often lacks prediagnosis information and can be subject to large intersubject variability, limiting the generalizability of findings. Thus, animal models are often used to identify and manipulate specific factors contributing to vascular disease because they provide a more controlled environment. In this review, we explore the use of CFD in animal models in recent studies to investigate the initiating mechanisms, progression, and intervention effects of various vascular diseases. The first section provides a brief overview of the CFD theory and tools that are commonly used to study blood flow. The following sections are separated by anatomical region, with the abdominal, thoracic, and cerebral areas specifically highlighted. We discuss the associated benefits and obstacles to performing CFD modeling in each location. Finally, we highlight animal CFD studies focusing on common surgical treatments, including arteriovenous fistulas (AVF) and pulmonary artery grafts. The studies included in this review demonstrate the value of combining CFD with animal imaging and should encourage further research to optimize and expand upon these techniques for the study of vascular disease.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Evgenia Korsukova ◽  
Hervé Morvan

Abstract Due to the continuous reduction of engine sizes, efficient under-race lubrication becomes ever more crucial in order to provide sufficient amount of oil to various engine components. An oil scoop is a rotating component that captures oil from a jet, and axially redirects it to the bearing, providing under-race lubrication. Given the importance of lubrication in high-speed engine components, the efficiency study of under-race lubrication appliances receives rapidly growing demands from manufacturers and therefore is of great interest. This work provides description of computational fluid dynamics (CFD) methods that were found to be most accurate and efficient for a large parameter analysis of the scoop capture efficiencies. One of the main purposes of this paper is to demonstrate an optimal and validated computational approach to modeling under-race lubrication with a focus on oil capture efficiency. Second, to show which factors most influence the scoop capture efficiency. Additionally, simulations allow for the fluid behavior inside the scoop to be observed that cannot be visualized experimentally due to high speeds. An improved method of efficiency calculation is also presented and compared to existing methods (Cageao, P. P., Simmons, K., Prabhakar, A., and Chandra, B., 2019, “Assessment of the Oil Scoop Capture Efficiency in High Speed Rotors,” ASME J. Eng. Gas Turbines Power, 141(1), p. 012401; Korsukova, E., Kruisbrink, A., Morvan, H., Paleo Cageao, P., and Simmons, K., 2016, “Oil Scoop Simulation and Analysis Using CFD and SPH,” ASME Paper No. GT2016-57554.). Results of both two-dimensional (2D) and semi-three-dimensional (3D) simulations are provided. Both qualitative comparison of 2D with semi-3D simulations and quantitative comparison of 2D simulations with experiments (Cageao, P. P., Simmons, K., Prabhakar, A., and Chandra, B., 2019, “Assessment of the Oil Scoop Capture Efficiency in High Speed Rotors,” ASME J. Eng. Gas Turbines Power, 141(1), p. 012401) show consistency. Parameter study using 2D simulations is shown with variation of rotational scoop speed, jet angles, velocity ratio. Key results show that changes of the jet angle and velocity ratio can improve the scoop efficiency.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Siong Lee ◽  
Thomas Choong ◽  
Luqman Abdullah ◽  
Mus’ab Abdul Razak ◽  
Zhen Ban

For a gas-liquid separator sizing, many engineers have neglected the flow pattern of incoming fluids. The impact of inlet slug flow which impeded onto the separator’s liquid phase will cause a separator fails to perform when sloshing happened in the separator. To date, the study on verifying the impact of inlet slug flow in a separator remains limited. In this paper, the impact of inlet momentum and inlet slug flow on the hydrodynamics in a separator for cases without an inlet device were investigated. The experimental and Computational Fluid Dynamics (CFD) results of cavity formation and sloshing occurrence in the separator in this study were compared. A User Defined Function (UDF) was used to describe the inlet slug flow at the separator inlet. Inlet slug flow occurred at inlet momentum from 200 to 1000 Pa, and sloshing occurred in the separator at 1000 Pa. Both experimental and simulated results showed similar phenomena.


Sign in / Sign up

Export Citation Format

Share Document