scholarly journals Oxytocin Modulation of Maternal Behavior and Its Association With Immunological Activity in Rats With Cesarean Delivery

ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142110147
Author(s):  
Tong Li ◽  
Shu-Wei Jia ◽  
Dan Hou ◽  
Xiaoran Wang ◽  
Dongyang Li ◽  
...  

Oxytocin (OT), a neuropeptide produced in the supraoptic (SON) and paraventricular (PVN) nuclei, is not only essential for lactation and maternal behavior but also for normal immunological activity. However, mechanisms underlying OT regulation of maternal behavior and its association with immunity around parturition, particularly under mental and physical stress, remain unclear. Here, we observed effects of OT on maternal behavior in association with immunological activity in rats after cesarean delivery (CD), a model of reproductive stress. CD significantly reduced maternal interests to the pups throughout postpartum day 1-8. On postpartum day 5, CD decreased plasma OT levels and thymic index but increased vasopressin, interleukin (IL)-1β, IL-6 and IL-10 levels. CD had no significant effect on plasma adrenocorticotropic hormone and corticosterone levels. In the hypothalamus, CD decreased corticotropin-releasing hormone contents in the PVN but increased OT contents in the PVN and SON and OT release from hypothalamic implants. CD also increased c-Fos expression, particularly in the cytoplasm of OT neurons. Lastly, CD depolarized resting membrane potential and increased spike width while increasing the variability of the firing rate of OT neurons in brain slices. Thus, CD can increase hypothalamic OT contents and release but reduce pituitary release of OT into the blood, which is associated with depressive-like maternal behavior, increased inflammatory cytokine release and decreased relative weight of the thymus.

2013 ◽  
Vol 22 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Jun Kim ◽  
Ji-Won Byun ◽  
Insup Choi ◽  
Beomsue Kim ◽  
Hey-Kyeong Jeong ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4676
Author(s):  
Katja Badanjak ◽  
Sonja Fixemer ◽  
Semra Smajić ◽  
Alexander Skupin ◽  
Anne Grünewald

With the world’s population ageing, the incidence of Parkinson’s disease (PD) is on the rise. In recent years, inflammatory processes have emerged as prominent contributors to the pathology of PD. There is great evidence that microglia have a significant neuroprotective role, and that impaired and over activated microglial phenotypes are present in brains of PD patients. Thereby, PD progression is potentially driven by a vicious cycle between dying neurons and microglia through the instigation of oxidative stress, mitophagy and autophagy dysfunctions, a-synuclein accumulation, and pro-inflammatory cytokine release. Hence, investigating the involvement of microglia is of great importance for future research and treatment of PD. The purpose of this review is to highlight recent findings concerning the microglia-neuronal interplay in PD with a focus on human postmortem immunohistochemistry and single-cell studies, their relation to animal and iPSC-derived models, newly emerging technologies, and the resulting potential of new anti-inflammatory therapies for PD.


2005 ◽  
Vol 19 (4) ◽  
pp. e60-e61
Author(s):  
Lara A. Regis ◽  
Christopher G. Engeland ◽  
Jos A. Bosch ◽  
John T. Cacioppo ◽  
Phillip T. Marucha

Shock ◽  
2007 ◽  
Vol 27 (4) ◽  
pp. 397-401 ◽  
Author(s):  
Abdulkadir Bedirli ◽  
Mustafa Kerem ◽  
Hatice Pasaoglu ◽  
Nalan Akyurek ◽  
Tugan Tezcaner ◽  
...  

2000 ◽  
Vol 83 (5) ◽  
pp. 2649-2660 ◽  
Author(s):  
C. Peter Bengtson ◽  
Peregrine B. Osborne

The ventral pallidum is a major source of output for ventral corticobasal ganglia circuits that function in translating motivationally relevant stimuli into adaptive behavioral responses. In this study, whole cell patch-clamp recordings were made from ventral pallidal neurons in brain slices from 6- to 18-day-old rats. Intracellular filling with biocytin was used to correlate the electrophysiological and morphological properties of cholinergic and noncholinergic neurons identified by choline acetyltransferase immunohistochemistry. Most cholinergic neurons had a large whole cell conductance and exhibited marked fast (i.e., anomalous) inward rectification. These cells typically did not fire spontaneously, had a hyperpolarized resting membrane potential, and also exhibited a prominent spike afterhyperpolarization (AHP) and strong spike accommodation. Noncholinergic neurons had a smaller whole cell conductance, and the majority of these cells exhibited marked time-dependent inward rectification that was due to an h-current. This current activated slowly over several hundred milliseconds at potentials more negative than −80 mV. Noncholinergic neurons fired tonically in regular or intermittent patterns, and two-thirds of the cells fired spontaneously. Depolarizing current injection in current clamp did not cause spike accommodation but markedly increased the firing frequency and in some cells also altered the pattern of firing. Spontaneous tetrodotoxin-sensitive GABAA-mediated inhibitory postsynaptic currents (IPSCs) were frequently recorded in noncholinergic neurons. These results show that cholinergic pallidal neurons have similar properties to magnocellular cholinergic neurons in other parts of the forebrain, except that they exhibit strong spike accommodation. Noncholinergic ventral pallidal neurons have large h-currents that could have a physiological role in determining the rate or pattern of firing of these cells.


1994 ◽  
Vol 72 (2) ◽  
pp. 1032-1036 ◽  
Author(s):  
M. R. Pelletier ◽  
J. J. Hablitz

1. Neocortical brain slices were prepared from rats (35–50 days of age) and maintained in vitro. Intracellular recordings were obtained from neurons in cortical layers II/III. The effect of bath application of cyclothiazide (CYZ), a potent blocker of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor desensitization, on evoked synaptic activity and passive membrane properties was investigated. 2. Bath application of CYZ did not significantly affect resting membrane potential, input resistance, or repetitive firing. CYZ increased both the amplitude and duration of evoked excitatory postsynaptic potentials (EPSPs). Polysynaptic responses were also augumented. These effects persisted after the blockade of N-methyl-D-aspartate (NMDA) receptors with D-2-amino-5-phosphonovaleric acid (D-APV). The magnitude of these effects appeared to vary directly with stimulation intensity and presumably, amount of glutamate release. 3. Epileptiform activity was induced by bath application of bicuculline methiodide. The amplitude and duration of evoked paroxysmal discharges were increased by CYZ. Similar results were seen in presence of D-APV. 4. These results indicate that CYZ has significant effects on synaptic transmission. Desensitization of non-NMDA receptors may be an important mechanism for determining the time course of EPSPs and in curtailing epileptiform responses in the rat neocortex.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Christopher Thomas Ford ◽  
Sian Richardson ◽  
Francis McArdle ◽  
Alan Crozier ◽  
Anne McArdle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document