scholarly journals 17β-Estradiol Attenuates Intracerebral Hemorrhage-Induced Blood–Brain Barrier Injury and Oxidative Stress Through SRC3-Mediated PI3K/Akt Signaling Pathway in a Mouse Model

ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142110384
Author(s):  
Han Xiao ◽  
Jianyang Liu ◽  
Jialin He ◽  
Ziwei Lan ◽  
Mingyang Deng ◽  
...  

Estrogen is neuroprotective in brain injury models, and steroid receptor cofactor 3 (SRC3) mediates estrogen signaling. We aimed to investigate whether and how SRC3 is involved in the neuroprotective effects of 17ß-estradiol (E2) in a mouse model of intracerebral hemorrhage (ICH). Ovariectomized female mice were treated with E2 after autologous blood injection-induced ICH. Brain damage was assessed by neurological deficit score, brain water content, and oxidative stress levels. Blood–brain barrier (BBB) integrity was evaluated by Evan's blue extravasation and claudin-5, ZO-1, and occludin levels. SRC3 expression and PI3K/Akt signaling pathway were examined in ICH mice treated with E2. The effect of SRC3 on E2-mediated neuroprotection was determined by examining neurological outcomes in SRC3-deficient mice undergone ICH and E2 treatment. We found that E2 alleviated ICH-induced brain edema and neurological deficits, protected BBB integrity, and suppressed oxidative stress. E2 enhanced SRC3 expression and PI3K-/Akt signaling pathway. SRC3 deficiency abolished the protective effects of E2 on ICH-induced neurological deficits, brain edema, and BBB integrity. Our results suggest that E2 suppresses ICH-induced brain injury and SRC3 plays a critical role in E2-mediated neuroprotection.

Oncotarget ◽  
2017 ◽  
Vol 8 (58) ◽  
pp. 97977-97989 ◽  
Author(s):  
Guangming Tang ◽  
Huiyun Yang ◽  
Jing Chen ◽  
Mengrao Shi ◽  
Lingqing Ge ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiaodong Wu ◽  
Jinting Wu ◽  
Wenjie Hu ◽  
Qinghua Wang ◽  
Hairong Liu ◽  
...  

Background. The aim of this study was to explore the role of hesperadin in intracerebral hemorrhage (ICH) mice, with the involvement of the mammalian ste20-like kinase 4 (MST4)/AKT signaling pathway. Methods. All mice were divided into four groups: sham group, sham+hesperidin group, ICH group, and ICH+hesperadin group. The effects of hesperadin were assessed on the basis of brain edema and neurobehavioral function. Furthermore, we observed MST4, AKT, phosphorylation of AKT (pAKT), and microtubule-associated protein light chain 3 (LC3) by western blotting. Protein localization of MST4 and LC3 was determined by immunofluorescence. Results. The expression of MST4 was upregulated at 12 h and 24 h after ICH. Brain edema was significantly decreased and neurological function was improved in the hesperadin treatment group compared to the ICH group (P<0.05). Hesperadin decreases the expressions of MST and increases pAKT after ICH. Autophagy significantly increased in the ICH group, while hesperadin reduced this increase. Conclusion. Hesperadin provides neuroprotection against ICH by inhibiting the MST4/AKT signaling pathway.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xin Qu ◽  
Ning Wang ◽  
Wenjin Chen ◽  
Meng Qi ◽  
Yueqiao Xue ◽  
...  

Abstract Intracerebral hemorrhage (ICH) is a common neurological condition associated with high disability and mortality. Alterations in protein ubiquitination have emerged as a key mechanism in the pathogenesis of neurological diseases. Here, we investigated the effects of the E3 ubiquitin ligase ring finger protein 34 (RNF34) on neurological deficits and brain injury in ICH mice. An ICH model was established via intracerebral injection of autologous blood into wild-type and RNF34 transgenic mice. Brain injury, neurological function, neuronal activity, and oxidative stress levels were measured, respectively. The underlying mechanisms were explored by molecular and cellular approaches. Our results showed that RNF34 overexpression in mice significantly aggravated the ICH-induced memory impairment, brain edema, infarction, hematoma volume, and loss of neuronal activity. RNF34 and oxidative stress levels gradually increased from 6 to 48 h after the ICH challenge and were positively correlated. The ICH-induced increase in intracellular ROS, superoxide anion, and mROS generation and the decrease in adenosine triphosphate production were exacerbated in RNF34 transgenic mice, but NADPH oxidase activity was unaffected. Moreover, RNF34 upregulation potentiated the ICH-induced decrease in PGC-1α, UCP2, and MnSOD expressions. RNF34 interacted with PGC-1α and targeted it for ubiquitin-dependent degradation. This study reveals that RNF34 exacerbates neurological deficits and brain injury by facilitating PGC-1α protein degradation and promoting mitochondrial dysfunction-mediated oxidative stress.


2018 ◽  
Vol 120 (6) ◽  
pp. 10248-10272 ◽  
Author(s):  
Ansar Karimian ◽  
Sayed Mostafa Mir ◽  
Hadi Parsian ◽  
Sona Refieyan ◽  
Mohammad Mirza‐Aghazadeh‐Attari ◽  
...  

2003 ◽  
Vol 15 (4) ◽  
pp. 1-7 ◽  
Author(s):  
Takehiro Nakamura ◽  
Richard F. Keep ◽  
Ya Hua ◽  
Timothy Schallert ◽  
Julian T. Hoff ◽  
...  

Object In the authors' previous studies they found that brain iron accumulation and oxidative stress contribute to secondary brain damage after intracerebral hemorrhage (ICH). In the present study they investigated whether deferoxamine, an iron chelator, can reduce ICH-induced brain injury. Methods Male Sprague–Dawley rats received an infusion of 100 μl of autologous whole blood into the right basal ganglia and were killed 1, 3, or 7 days thereafter. Iron distribution was examined histochemically (enhanced Perl reaction). The effects of deferoxamine on ICH-induced brain injury were examined by measuring brain edema and neurological deficits. Apurinic/apyrimidinic endonuclease/redox effector factor–1 (APE/Ref-1), a repair mechanism for DNA oxidative damage, was quantitated by Western blot analysis. Iron accumulation was observed in the perihematoma zone beginning 1 day after ICH. Deferoxamine attenuated brain edema, neurological deficits, and ICH-induced changes in APE/Ref-1. Conclusions Deferoxamine and other iron chelators may be potential therapeutic agents for treating ICH. They may act by reducing the oxidative stress caused by the release of iron from the hematoma.


2021 ◽  
pp. 1-11
Author(s):  
Yupeng Liu ◽  
Hui Wu ◽  
Fan Zhang ◽  
Jun Yang ◽  
Jingchun He

Resveratrol is a non-flavonoid polyphenol compound that exists in many plants, and is considered an antitoxin. This study explores the effects from the regulation of miR-455-5p by resveratrol on cisplatin-induced ototoxicity via the PTEN–PI3K–AKT signaling pathway. For this, House Ear Institute–Organ of Corti 1 (HEI-OC1) cells were transfected with miR-455-5p inhibitor and treated with cisplatin and resveratrol, then cell proliferation, apoptosis, and oxidative stress were evaluated. A mouse model of hearing loss was established, and these mice were treated with cisplatin, resveratrol, or cisplatin combined with resveratrol, by intraperitoneal injection. The auditory brainstem response (ABR) threshold was measured, and hair cells were examined using immunofluorescence staining. The expression levels of miR-455-5p, PTEN, and PI3K/Akt proteins were examined. The results from our in-vitro experiments indicate that resveratrol promoted viability and reduced apoptosis and oxidative stress in cisplatin-induced HEI-OC1 cells. Resveratrol upregulated miR-455-5p, downregulated PTEN, and activated the PI3K–Akt axis. These effects of resveratrol were reversed by knock-down of miR-455-5p. The results from our in-vivo experiments indicate that resveratrol protected hearing and inhibited the hair-cell injury caused by cisplatin ototoxicity. Resveratrol also upregulated miR-455-5p, downregulated PTEN, and activated the PTEN–PI3K–Akt axis in cochlear tissues from cisplatin-treated mice. These results indicate that resveratrol upregulates miR-455-5p to target PTEN and activate the PI3K–Akt signaling pathway to counteract cisplatin ototoxicity.


2004 ◽  
Vol 100 (4) ◽  
pp. 672-678 ◽  
Author(s):  
Takehiro Nakamura ◽  
Richard F. Keep ◽  
Ya Hua ◽  
Timothy Schallert ◽  
Julian T. Hoff ◽  
...  

Object. Previous studies undertaken by the authors have indicated that iron accumulation and oxidative stress in the brain contribute to secondary brain damage after intracerebral hemorrhage (ICH). In the present study the authors investigate whether deferoxamine, an iron chelator, can reduce ICH-induced brain injury. Methods. Male Sprague—Dawley rats each received an infusion of 100 µl of autologous whole blood into the right basal ganglia and were killed 1, 3, or 7 days later. Iron distribution was examined histochemically (enhanced Perls reaction). The effects of deferoxamine on ICH-induced brain injury were examined by measuring brain edema and neurological deficits. Immunohistochemical analysis was performed to investigate 8-hydroxyl-2′-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, and Western blot analysis was performed to measure the amount of apurinic/apyrimidinic endonuclease/redox effector factor—1 (APE/Ref-1), a repair mechanism for DNA oxidative damage. Iron accumulation was observed in the perihematomal zone from 1 day after ICH. Deferoxamine attenuated brain edema, neurological deficits, and ICH-induced changes in 8-OHdG and APE/Ref-1. Conclusions. Deferoxamine and other iron chelators may be potential therapeutic agents for ICH. They may act by reducing the oxidative stress caused by the release of iron from the hematoma.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Da Tang ◽  
Guang Fu ◽  
Wenbo Li ◽  
Ping Sun ◽  
Patricia A. Loughran ◽  
...  

Abstract Background Hepatic ischemia/reperfusion (I/R) injury can be a major complication following liver surgery contributing to post-operative liver dysfunction. Maresin 1 (MaR1), a pro-resolving lipid mediator, has been shown to suppress I/R injury. However, the mechanisms that account for the protective effects of MaR1 in I/R injury remain unknown. Methods WT (C57BL/6J) mice were subjected to partial hepatic warm ischemia for 60mins followed by reperfusion. Mice were treated with MaR1 (5-20 ng/mouse), Boc2 (Lipoxin A4 receptor antagonist), LY294002 (Akt inhibitor) or corresponding controls just prior to liver I/R or at the beginning of reperfusion. Blood and liver samples were collected at 6 h post-reperfusion. Serum aminotransferase, histopathologic changes, inflammatory cytokines, and oxidative stress were analyzed to evaluate liver injury. Signaling pathways were also investigated in vitro using primary mouse hepatocyte (HC) cultures to identify underlying mechanisms for MaR1 in liver I/R injury. Results MaR1 treatment significantly reduced ALT and AST levels, diminished necrotic areas, suppressed inflammatory responses, attenuated oxidative stress and decreased hepatocyte apoptosis in liver after I/R. Akt signaling was significantly increased in the MaR1-treated liver I/R group compared with controls. The protective effect of MaR1 was abrogated by pretreatment with Boc2, which together with MaR1-induced Akt activation. MaR1-mediated liver protection was reversed by inhibition of Akt. Conclusions MaR1 protects the liver against hepatic I/R injury via an ALXR/Akt signaling pathway. MaR1 may represent a novel therapeutic agent to mitigate the detrimental effects of I/R-induced liver injury.


Sign in / Sign up

Export Citation Format

Share Document