Ubiquitin–Proteasome Axis, Especially Ubiquitin-Specific Protease-17 (USP17) Gene Family, is a Potential Target for Epithelial–Mesenchymal Transition in High-Grade Serous Ovarian Cancer

2018 ◽  
Vol 26 (6) ◽  
pp. 794-805 ◽  
Author(s):  
Nuri Yildirim ◽  
Gizem Calibasi Kocal ◽  
Zerrin Isik ◽  
Bahadır Saatli ◽  
Ugur Saygili ◽  
...  

Objectives: To investigate gene expression differences and related functions between primary tumor, malignant cells in ascites, and metastatic peritoneal implant in high-grade serous ovarian cancer. Methods: Biopsies from primary tumor, peritoneal implant, and ascites were collected from 10 patients operated primarily for high-grade, advanced-staged serous ovarian cancer. Total RNA isolation was performed from collected tissue biopsy and fluid samples, and RNA expression profile was measured. Messenger RNA expression profiles of 3 different groups were compared. Functional analyses of candidate genes were carried out by gene ontology and pathway analysis. Results: There were significant differences in the expression of 5 genes between primary tumor and peritoneal implant, 979 genes between primary tumor and malignant cells in ascites, and 649 genes between peritoneal implant and malignant cells in ascites. Three commonly enriched gene ontology functions between “primary tumor and malignant cells in the ascites” and “peritoneal implant and malignant cells in the ascites” were protein deubiquitination, ubiquitin-dependent protein catabolism, and apoptotic processes. All genes related to these functions belonged to USP17 gene family. Conclusion: Gene expression difference between primary tumor and the peritoneal implant is not as much as the difference between primary tumor and free cells in the ascites. These results show that malignant cells in the ascites return into its genetic origin after they invade on the peritoneum. Significantly increased expression of DUB-enzyme genes, SNAR gene family, and ribosomal pathway genes in epithelial–mesenchymal transition suggests that this regulation is ubiquitin–proteasome dependent. Especially, this is the first study that offers USP17 as a potential target for epithelial–mesenchymal transition.

2021 ◽  
Author(s):  
Yali Fan ◽  
Jiandong Wang ◽  
Ziwei Fang ◽  
Stuart R Pierce ◽  
Lindsay West ◽  
...  

Abstract Background: ONC201 is a promising first-in-class small molecule that has been reported to have anti-neoplastic activity in various types of cancer through activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as well as activation of mitochondrial caseinolytic protease P (ClpP).Methods: Our objective was to evaluate the effect of the ONC201 on (1) proliferation, cellular stress, apoptosis and invasion in human serous ovarian cancer (OC) cell lines, and (2) inhibition of tumor growth in a genetically engineered mouse model of high grade serous OC (K18-gT121+/-;p53fl/fl;Brca1fl/fl; KpB) under obese (high fat diet) and lean (low fat diet) conditions. Results: ONC201 significantly suppressed cell proliferation, induced arrest in G1 phase, and increased cellular stress and apoptosis, accompanied by dual inhibition of the AKT/mTOR/S6 and MAPK pathways in OC cells. ONC201 also resulted in inhibition of adhesion and invasion via epithelial–mesenchymal transition and reduction of VEGF expression. Pre-treatment with the anti-oxidant, N-acetylcysteine (NAC), reversed the ONC201-induced oxidative stress response, and prevented ONC201-reduced VEGF and cell invasion by regulating epithelial–mesenchymal transition protein expression. Knockdown of ClpP in ovarian cancer cells reduced ONC201 mediated the anti-tumor activity and cellular stress. Diet-induced obesity accelerated ovarian tumor growth in the KpB mouse model. ONC201 significantly suppressed tumor growth, and decreased serum VEGF production in obese and lean mice, leading to a decrease in tumoral expression of Ki-67, VEGF and phosphorylation of p42/44 and S6 and an increase in ClpP and DRD5, as assessed by immunohistochemistry. Additionally, ONC201 exhibited greater anti-tumor efficacy in obese (75%) as compared to lean (65%) mice. InterpretationConclusions: These results suggest that ONC206 may be a promising therapeutic agent to be explored in future clinical trials in high grade serous OC.


Author(s):  
Slavomir Krajnak ◽  
Jörg Jäkel ◽  
Katharina Anić ◽  
Roxana Schwab ◽  
Marcus Schmidt ◽  
...  

Abstract Purpose Integrins may be involved in the metastatic spread of high-grade serous ovarian cancer (HGSOC) which determines the therapeutical approach and prognosis. We investigated the integrin expression in primary tumor and metastases of advanced HGSOC. Methods The expression of integrin α2, α4, α5, α6, and β1 was assessed by immunostaining in tumor samples of the ovary, omentum, and peritoneum of each patient. Differences in integrin expression among tumor localizations and their association with clinicopathological parameters were examined by Fisher’s exact test. The impact of integrin expression on progression-free survival (PFS) and overall survival (OS) was examined by Cox regression and Kaplan–Meier analyses. Results Hundred and thirteen tumor samples of 40 HGSOC patients were examined. The expression of the integrins did not differ between the three tumor localizations (all p values > 0.05) with the exception of high expression of integrin α4 in primary tumor and omentum (52.5% versus 47.5%, p = 0.008) and primary tumor and peritoneum (52.5% versus 47.5%, p = 0.050). High expression of integrin α4 in peritoneum was associated with poorer PFS (HR 2.02 95% CI 1.01–4.05, p = 0.047), younger age (p = 0.047), and death (p = 0.046). Median PFS in patients with high expression of integrin α4 was 13.00 months, whereas median PFS in patients without high expression of integrin α4 was 21.00 months (p = 0.040). Expression of other integrins did not correlate with PFS or OS. Conclusion Expression of integrin α4 may be altered during the metastatic spread of HGSOC and affect prognosis, whereas expression of integrin α2, α5, α6, and β1 did not reveal any prognostic value.


2021 ◽  
Vol 10 ◽  
Author(s):  
Arthur-Quan Tran ◽  
Stephanie A. Sullivan ◽  
Leo Li-Ying Chan ◽  
Yajie Yin ◽  
Wenchuan Sun ◽  
...  

SPR965 is an inhibitor of PI3K and mTOR C1/C2 and has demonstrated anti-tumorigenic activity in a variety of solid tumors. We sought to determine the effects of SPR965 on cell proliferation and tumor growth in human serous ovarian cancer cell lines and a transgenic mouse model of high grade serous ovarian cancer (KpB model) and identify the underlying mechanisms by which SPR965 inhibits cell and tumor growth. SPR965 showed marked anti-proliferative activity by causing cell cycle arrest and inducing cellular stress in ovarian cancer cells. Treatment with SPR965 significantly inhibited tumor growth in KpB mice, accompanied by downregulation of Ki67 and VEGF and upregulation of Bip expression in ovarian tumors. SPR965 also inhibited adhesion and invasion through induction of the epithelial–mesenchymal transition process. As expected, downregulation of phosphorylation of AKT and S6 was observed in SPR965-treated ovarian cancer cells and tumors. Our results suggest that SPR965 has significant anti-tumorigenic effects in serous ovarian cancer in vitro and in vivo. Thus, SPR965 should be evaluated as a promising targeted agent in future clinical trials of ovarian cancer.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 662 ◽  
Author(s):  
Martyna Pakuła ◽  
Paweł Uruski ◽  
Arkadiusz Niklas ◽  
Aldona Woźniak ◽  
Dariusz Szpurek ◽  
...  

The study was designed to establish whether high aggressiveness of high-grade serous ovarian cancer cells (HGSOCs), which display rapid growth, advanced stage at diagnosis and the highest mortality among all epithelial ovarian cancer histotypes, may be linked with a specific pattern of mesothelial-mesenchymal transition (MMT) elicited by these cells in normal peritoneal mesothelial cells (PMCs). Experiments were performed on primary PMCs, stable and primary ovarian cancer cells, tumors from patients with ovarian cancer, and laboratory animals. Results of in vitro and in vivo tests showed that MMT triggered by HGSOCs (primary cells and OVCAR-3 line) is far more pronounced than the process evoked by cells representing less aggressive ovarian cancer histotypes (A2780, SKOV-3). Mechanistically, HGSOCs induce MMT via Smad 2/3, ILK, TGF-β1, HGF, and IGF-1, whereas A2780 and SKOV-3 cells via exclusively Smad 2/3 and HGF. The conditioned medium from PMCs undergoing MMT promoted the progression of cancer cells and the effects exerted by the cells triggered to undergo MMT by the HGSOCs were significantly stronger than those related to the activity of their less aggressive counterparts. Our findings indicate that MMT in PMCs provoked by HGSOCs is stronger, proceeds via different mechanisms and has more procancerous characteristics than MMT provoked by less aggressive cancer histotypes, which may at least partly explain high aggressiveness of HGSOCs.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ana Luiza Drumond-Bock ◽  
Magdalena Bieniasz

AbstractHigh-grade serous ovarian carcinoma (HGSOC) is the most aggressive type of ovarian cancer, often diagnosed at advanced stages. Molecularly, HGSOC shows high degree of genomic instability associated with large number of genetic alterations. BRD4 is the 4th most amplified gene in HGSOC, which correlates with poor patients’ prognosis. BRD4 is constitutively expressed and generates two proteins, BRD4 long (BRD4-L) and BRD4 short (BRD4-S). Both isoforms contain bromodomains that bind to lysine-acetylated histones. Amongst other functions, BRD4 participates in chromatin organization, acetylation of histones, transcriptional control and DNA damage repair. In cancer patients with amplified BRD4, the increased activity of BRD4 is associated with higher expression of oncogenes, such as MYC, NOTCH3 and NRG1. BRD4-driven oncogenes promote increased tumor cells proliferation, genetic instability, epithelial-mesenchymal transition, metastasis and chemoresistance. Ablation of BRD4 activity can be successfully achieved with bromodomain inhibitors (BETi) and degraders, and it has been applied in pre-clinical and clinical settings. Inhibition of BRD4 function has an effective anti-cancer effect, reducing tumor growth whether ablated by single agents or in combination with other drugs. When combined with standard chemotherapy, BETi are capable of sensitizing highly resistant ovarian cancer cell lines to platinum drugs. Despite the evidence that BRD4 amplification in ovarian cancer contributes to poor patient prognosis, little is known about the specific mechanisms by which BRD4 drives tumor progression. In addition, newly emerging data revealed that BRD4 isoforms exhibit contradicting functions in cancer. Therefore, it is paramount to expand studies elucidating distinct roles of BRD4-L and BRD4-S in HGSOC, which has important implications on development of therapeutic approaches targeting BRD4.


Sign in / Sign up

Export Citation Format

Share Document