scholarly journals Essential Oil from the Underground Parts of Laserpitium zernyi: Potential Source of α-Bisabolol and its Antimicrobial Activity

2010 ◽  
Vol 5 (2) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Višnja Popović ◽  
Silvana Petrović ◽  
Milica Pavlović ◽  
Marina Milenković ◽  
Maria Couladis ◽  
...  

The composition and antimicrobial activity of the essential oil from the underground parts (roots and rhizomes) of Laserpitium zernyi Hayek (Apiaceae) were investigated. The pale blue essential oil, obtained by hydrodistillation, was analyzed by GC and GC-MS. Forty-three compounds were identified (94.3% of total oil). The main constituent, beside α-pinene (31.6%) was α-bisabolol (30.9%), so this oil may be a novel potential natural source of this sesquiterpene alcohol. The antimicrobial activity was tested using the microdilution method against Gram (+) bacteria (Staphylococcus aureus, S. epidermidis, Micrococcus luteus, Enterococcus faecalis), Gram (–) bacteria (Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli), and two strains of yeast (Candida albicans). L. zernyi oil showed significant antibacterial activity against S. epidermidis, S. aureus and M. luteus, but lower activities against the other tested strains.

2015 ◽  
Vol 43 (2) ◽  
pp. 432-438 ◽  
Author(s):  
Aneta WESOŁOWSKA ◽  
Monika GRZESZCZUK ◽  
Dorota JADCZAK ◽  
Paweł NAWROTEK ◽  
Magdalena STRUK

The chemical composition of the essential oils obtained by hydrodistillation from the aerial parts of Thymus serpyllum and Thymus serpyllum‘Aureus’ has been investigated by gas chromatography-mass spectrometry (GC-MS). Forty-seven compounds (99.67% of the total oil) wereidentified in the essential oil of T. serpyllum. The main components found in the oil were carvacrol (37.49%), -terpinene (10.79%), -caryophyllene (6.51%), p-cymene (6.06%), (E)--ocimene (4.63%) and -bisabolene (4.51%). Similarly, carvacrol (44.93%), -terpinene(10.08%), p-cymene (7.39%) and -caryophyllene (6.77%) dominated in the oil of T. serpyllum ‘Aureus’. A total of forty three compounds wereidentified in this oil, representing 99.49% of the total oil content. On the basis of the obtained data it was proved that the content of 1-octen-3-ol,eucalyptol, (Z)--ocimene, (E)--ocimene, -terpinene, carvacrol methyl ether, germacrene D and -bisabolene was significantly higher for T.serpyllum while T. serpyllum ‘Aureus’ was characterized by a significantly higher content of 3-octanone, 3-octanol, p-cymene, borneol andcarvacrol. The isolated essential oils were evaluated for their antimicrobial activity against nine reference strains (Escherichia coli, Staphylococcusaureus, Staphylococcus epidermidis, Streptococcus agalactiae, Enterococcus faecalis, Bacillus cereus, Micrococcus luteus, Proteus vulgaris and Candidaalbicans) by the microdilution technique. Based on this test, the minimum inhibitory concentrations (MIC) of essential oil were calculated. Thevolatile oil obtained from T. serpyllum showed the highest antimicrobial activity relative to the strain of E. coli (MIC=0.025 μL/mL) and to theyeast C. albicans (MIC=0.05 μL/mL). Similarly, a significant antimicrobial activity exhibited T. serpyllum ‘Aureus’ essential oil, although the MICvalues obtained in that case for E. coli and C. albicans strains were twice as high and were respectively 0.05 μL/mL and 0.1 μL/mL.


2011 ◽  
Vol 6 (2) ◽  
pp. 1934578X1100600
Author(s):  
Milica Pavlović ◽  
Silvana Petrović ◽  
Marina Milenković ◽  
Maria Couladis ◽  
Olga Tzakou ◽  
...  

The essential oil obtained by hydrodistillation from the roots of Anthriscus nemorosa (Bieb.) Sprengel (Umbelliferae) was analyzed by GC and GC-MS. Among sixty-two compounds identified (representing 89.0% of the total oil), the main components were: n-nonane (12.1%), n-hexadecanol (6.9%), δ-cadinene (6.4%), β-pinene (6.0%) and germacrene D (5.4%). Furthermore, the antimicrobial activity of the oil was evaluated against the Gram-positive bacteria Staphylococcus epidermidis (ATCC 12228) and Bacillus subtilis (ATCC 6633), the Gramnegative bacterium Escherichia coli (ATCC 25922), and a yeast Candida albicans (ATCC 10259 and ATCC 24433) using the broth microdilution method.


1989 ◽  
Vol 44 (3-4) ◽  
pp. 183-188 ◽  
Author(s):  
K.-H. Kubeczka ◽  
G. Schmaus ◽  
W. Schultze ◽  
I. Ullmann

Abstract The composition of the essential root oil of Peucedanum lancifolium Lange (A piaceae), growing in the Atlantic coast regions of France, North-West Spain und Portugal was investigated by chromatographic and spectroscopic methods. Forty five terpenoids, many of them of already known structure, and several aliphatic esters have been identified. Besides the main constituent, the irregular sesquiterpene alcohol trans-sesquilavandulol, representing 53.37% of the total oil, some hitherto unknown sesquiterpenoids with an irregular carbon skeleton were found. The possible chemotaxonomic value of the essential oil com position with regard to the close botanical relationship of Peucedanum lancifolium Lange and Peucedanum palustre (L .) M oench is briefly discussed. With the exception of these two species, trans-sesquilavandulol was not found in any other member of the genus Peucedanum.


2010 ◽  
Vol 65 (9-10) ◽  
pp. 588-593 ◽  
Author(s):  
Wagner A. Bernardes ◽  
Rodrigo Lucarini ◽  
Marcos G. Tozatti ◽  
Lúzio G. Bocalon Flauzino ◽  
Maria G. M. Souza ◽  
...  

The essential oil of Rosmarinus officinalis L. (rosemary) was obtained by hydro-distillation and analysed by gas chromatography-mass spectrometry. Sixty-two constituents were identified, representing 98.06% of the total oil content. Oxygenated monoterpenes were the predominant components. The rosemary oil was characterized as having prominent (> 5%) contents of camphor (18.9%), verbenone (11.3%), α-pinene (9.6%), β-myrcene (8.6%), 1,8-cineole (8.0%), and β-caryophyllene (5.1%). The antimicrobial activity of the oil as well as of its major constituents was tested against the following microorganisms: Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Streptococcus salivarius, Streptococcus sobrinus, and Enterococcus faecalis, which are potentially responsible for the formation of dental caries in humans. The microdilution method was used for determination of the minimum inhibitory concentration (MIC) during evaluation of the antibacterial activity. The essential oil displayed low activity against the selected microorganisms. In the present study, the pure major compounds were more active than the essential oil. Among all the microorganisms tested, the pathogen S. mitis was the most susceptible and E. faecalis was the most resistant to the evaluated samples. This is the first report on antimicrobial activity of the major components of rosemary oil against oral pathogens.


Author(s):  
Prakash Singh, Ravendra Kumar ◽  
Om Prakash, Anil Kumar Pant ◽  
Mahesh Kumar ◽  
Valary A. Isidorov, Lech Szczepaniak

For the present investigation Rabdosia rugosus Wall. Syn. Plectranthus rugosus Wall.  was collected from Pancheshwar, Uttarakhand on the way to Badrinath. The GC and GC-MS analysis, revealed the presence of more than forty compounds out of which 35 compounds were identified amounting to 97.3% of the total oil. The essential oil of R. rugosus was rich in sesquiterpinoids (~90%) and was poor in monoterpenoids (8.1%). α-bisabolol (41.9%) was the major constituent of the oil and the other identified major compounds were germacrene-D (9.7%), β-caryophyllene (7.6%), dehydroabietane (5.2%), ar-curcumene (5.0), trans-ferruginol (3.3%) α-cadinol (3.2%), τ-muurolol (2.3%),   p-Cymene (3.2%) and  γ-terpinene (2.0%). The  essential  oil  of  Rabdosia rugosus showed insignificant  anti-inflammatory  and  analgesic  activity  but  shows  significant  antipyretic,   myorelaxant and  antimicrobial activity.


2011 ◽  
Vol 6 (1) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Rajesh K. Joshi ◽  
Vijayalaxmi M. Badakar ◽  
Sanjiva D. Kholkute ◽  
Nayeem Khatib

The essential oil of the leaves of Feronia elephantum Corr. was analyzed by gas chromatography and gas chromatography/mass spectrometry. The main constituents were β-pinene (28.4%), Z-anethole (22.1%), methyl chavicol (12.0%) and E-anethole (8.1%), among thirty-three identified compounds, which represented 92.6% of the total oil. The antimicrobial activity was tested against five Gram-positive and eight Gram-negative bacteria, and four fungi. The oil was active against Micrococcus luteus (Gram-positive bacterium), Proteus mirabilis (Gram-negative bacterium), Penicillium chrysogenum and Aspergillus niger (fungi) with MIC values of 0.31±0.06, 0.52±0.10, 0.20±0.50 and 0.26±0.52 mg/mL, respectively.


2009 ◽  
Vol 4 (7) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Rajesh K. Joshi ◽  
Chitra Pande ◽  
Mohammad H. K. Mujawar ◽  
Sanjiva D. Kholkute

The essential oil composition of the aerial parts of Anaphalis nubigena DC. var. monocephala (DC.) C. B. Clarke collected from Pindari glacier at a height of 3300 m, was analyzed by using GC and GC/MS. Sixty components were identified, accounting for 95.9% of the total oil. The main constituents were α-guaiene (12.3%), γ-muurolene (10.4%), γ-cadinene (8.3%), α-muurolol (7.4%), α-gurjunene (6.0%) and α-bulnesene (5.8%). The oil was found to be rich in sesquiterpene hydrocarbons (60.1%). The oil was active against Escherichia coli (NCIM 2065) and Klebsiella pneumoniae (NCIM 2957), with MIC values of 125 μg/mL and 500 μg/mL, respectively.


2020 ◽  
Vol 10 ◽  
Author(s):  
Navadha Bhatt ◽  
Navabha Joshi ◽  
Kapil Ghai ◽  
Om Prakash

Background: The Lamiaceae (Labiatae) is one of the most diverse and widespread plant families’ in terms of ethno medicine and its medicinal value is based on the volatile oils concentration. This family is important for flavour, fragrance and medicinal properties. Manyplants belonging to this family have indigenous value. Method: The essential oil of Plectranthus gerardianusBenth. (Lamiaceae), was analysed by GC and GC-MS analysis, while the major component was isolated and conformed by NMR spectroscopy. Result: The oil was found to be rich in oxygenated monoterpenes, which contribute around 62% of the total oil. The major components identified were fenchone (22.90%) and carvenone oxide (16.75%), besides other mono and sesquiterpenoids. The in-vitro antimicrobial activity of essential oil was tested against three gram negative bacteria viz. Pasteurellamultocida, Escherichia coli, and Salmonella enterica, two gram positive bacteria viz. Staphylococcus aureus and Bacillus subtilis and two fungi viz. Candida albicans and Aspergillusflavus. The antimicrobial activity of the oil was also compared to the antimicrobial activity of leaf essential oil of another Himalayan plant viz. Nepetacoerulescens. Conclusion: The oil showed in-vitro antimicrobial activity against all the microbial strains and can lessen the ever-growing demand of potentially hazardous antibiotics for treatment.


Planta Medica ◽  
2018 ◽  
Vol 84 (09/10) ◽  
pp. 662-673 ◽  
Author(s):  
Ané Orchard ◽  
Alvaro Viljoen ◽  
Sandy van Vuuren

AbstractFoot odour (bromodosis) is an embarrassing and perplexing condition mostly caused by bacteria of the Brevibacterium species. Essential oils are a credible option as an affordable treatment of odour and contribute towards antimicrobial efficacy. Therefore, this study sets out to investigate the antimicrobial activity of essential oil combinations against odour-causing bacteria. The broth microdilution method was used to investigate the antimicrobial activity of 119 essential oil combinations, and the fractional inhibitory index was calculated to determine the interactive profile. Combinations that resulted in synergy in 1 : 1 ratios were further evaluated in different concentrations, and isobolograms were plotted to determine the influence of the ratio on overall activity. Numerous combinations could be identified as having synergistic interactions against the Brevibacterium spp. and no antagonism was observed. The combination of Juniperus virginiana (juniper) and Styrax benzoin (benzoin) demonstrated synergy against all three Brevibacterium spp. tested and J. virginiana was the essential oil responsible for the majority of the synergistic interactions. The results reported here confirm the promising potential of the majority of these oils and selected combinations in treating and controlling bromodosis.


2005 ◽  
Vol 68 (12) ◽  
pp. 2559-2566 ◽  
Author(s):  
SYLVIA GAYSINSKY ◽  
P. MICHAEL DAVIDSON ◽  
BARRY D. BRUCE ◽  
JOCHEN WEISS

Growth inhibition of four strains of Escherichia coli O157:H7 (H1730, F4546, 932, and E0019) and Listeria monocytogenes (Scott A, 101, 108, and 310) by essential oil components (carvacrol and eugenol) solubilized in nonionic surfactant micelles (Surfynol 465 and 485W) was investigated. Concentrations of encapsulated essential oil components ranged from 0.02 to 1.25% depending on compound, surfactant type, and surfactant concentration (0.5 to 5%). Eugenol encapsulated in Surfynol 485W micelles was most efficient in inhibiting growth of the pathogens; 1% Surfynol 485W and 0.15% eugenol was sufficient to inhibit growth of all strains of E. coli O157:H7 and three of four strains of L. monocytogenes (Scott A, 310, and 108). The fourth strain, L. monocytogenes 101, was inhibited by 2.5% Surfynol and 0.225% eugenol. One percent Surfynol 485W in combination with 0.025% carvacrol was effective in inhibiting three of four strains of E. coli O157:H7. Strain H1730 was the most resistant strain, requiring 0.3% carvacrol and 5% surfactant for complete inhibition. Growth inhibition of L. monocytogenes by combinations of carvacrol and Surfynol 465 ranged between 0.15 and 0.35% and 1 and 3.75%, respectively. Generally, the antimicrobial activity of Surfynol 465 in combination with eugenol was higher than that for the combination with carvacrol. The potent activity was attributed to increased solubility of essential oil components in the aqueous phase due to the presence of surfactants and improved interactions of antimicrobials with microorganisms.


Sign in / Sign up

Export Citation Format

Share Document