scholarly journals Antimicrobial Activity of the Essential Oil of Greek Endemic Stachys spruneri and its Main Component, Isoabienol

2011 ◽  
Vol 6 (2) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Aikaterini Koutsaviti ◽  
Marina Milenković ◽  
Olga Tzakou

The essential oils of Stachys spruneri Boiss. (sample A and sample B) were analyzed by GC and GC-MS. (+)-Isoabienol was the dominant component (49.5 and 48.2%, respectively of the total oils) among seventy-two identified constituents. Isoabienol was separated, purified by preparative thin-layer chromatography, and further identified by means of physicochemical and spectrometric analysis. The microbial growth inhibitory properties of the essential oil and its main metabolite, the labdane diterpene isoabienol, were determined using the broth microdilution method against eight laboratory strains of bacteria (Gram- positive: Staphylococcus aureus, S. epidermidis, Micrococcus luteus, Enterococcus faecalis, Bacillus subtilis, and Gram- negative: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and two strains of the yeast Candida albicans. Both essential oil and isoabienol showed considerable activity against all the microorganisms tested, with the isolated compound being most active.

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1065
Author(s):  
Vaida Vaičiulytė ◽  
Kristina Ložienė ◽  
Jurgita Švedienė ◽  
Vita Raudonienė ◽  
Algimantas Paškevičius

The aim of this study was to evaluate occurrence of T. pulegioides α-terpinyl acetate chemotype, as source of natural origin α-terpinyl acetate, to determine its phytotoxic and antimicrobial features. Were investigated 131 T. pulegioides habitats. Essential oils were isolated by hydrodistillation and analyzed by GC-FID and GC-MS. Phytotoxic effect of essential oil of this chemotype on monocotyledons and dicotyledons through water and air was carried out in laboratory conditions; the broth microdilution method was used to screen essential oil effect against human pathogenic microorganisms. Results showed that α-terpinyl acetate was very rare compound in essential oil of T. pulegioides: it was found only in 35% of investigated T. pulegioides habitats. α-Terpinyl acetate (in essential oil and pure) demonstrated different behavior on investigated plants. Phytotoxic effect of α-terpinyl acetate was stronger on investigated monocotyledons than on dicotyledons. α-Terpinyl acetate essential oil inhibited seeds germination and radicles growth for high economic productivity forage grass monocotyledon Poa pratensis, but stimulated seed germination for high economic productive forage legume dicotyledon Trifolium pretense. α-Terpinyl acetate essential oil showed high antimicrobial effect against fungi and dermatophytes but lower effect against bacteria and Candida yeasts. Therefore, T. pulegioides α-terpinyl acetate chemotype could be a potential compound for developing preventive measures or/and drugs for mycosis.


Planta Medica ◽  
2018 ◽  
Vol 84 (09/10) ◽  
pp. 662-673 ◽  
Author(s):  
Ané Orchard ◽  
Alvaro Viljoen ◽  
Sandy van Vuuren

AbstractFoot odour (bromodosis) is an embarrassing and perplexing condition mostly caused by bacteria of the Brevibacterium species. Essential oils are a credible option as an affordable treatment of odour and contribute towards antimicrobial efficacy. Therefore, this study sets out to investigate the antimicrobial activity of essential oil combinations against odour-causing bacteria. The broth microdilution method was used to investigate the antimicrobial activity of 119 essential oil combinations, and the fractional inhibitory index was calculated to determine the interactive profile. Combinations that resulted in synergy in 1 : 1 ratios were further evaluated in different concentrations, and isobolograms were plotted to determine the influence of the ratio on overall activity. Numerous combinations could be identified as having synergistic interactions against the Brevibacterium spp. and no antagonism was observed. The combination of Juniperus virginiana (juniper) and Styrax benzoin (benzoin) demonstrated synergy against all three Brevibacterium spp. tested and J. virginiana was the essential oil responsible for the majority of the synergistic interactions. The results reported here confirm the promising potential of the majority of these oils and selected combinations in treating and controlling bromodosis.


2011 ◽  
Vol 6 (2) ◽  
pp. 1934578X1100600
Author(s):  
Milica Pavlović ◽  
Silvana Petrović ◽  
Marina Milenković ◽  
Maria Couladis ◽  
Olga Tzakou ◽  
...  

The essential oil obtained by hydrodistillation from the roots of Anthriscus nemorosa (Bieb.) Sprengel (Umbelliferae) was analyzed by GC and GC-MS. Among sixty-two compounds identified (representing 89.0% of the total oil), the main components were: n-nonane (12.1%), n-hexadecanol (6.9%), δ-cadinene (6.4%), β-pinene (6.0%) and germacrene D (5.4%). Furthermore, the antimicrobial activity of the oil was evaluated against the Gram-positive bacteria Staphylococcus epidermidis (ATCC 12228) and Bacillus subtilis (ATCC 6633), the Gramnegative bacterium Escherichia coli (ATCC 25922), and a yeast Candida albicans (ATCC 10259 and ATCC 24433) using the broth microdilution method.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Sanjay Guleria ◽  
A. K. Tiku ◽  
Apurva Koul ◽  
Sahil Gupta ◽  
Gurjinder Singh ◽  
...  

The essential oil obtained from the fresh leaves ofZanthoxylum alatumwas analysed by gas chromatography/mass spectrometry (GC/MS). Fourteen components were identified, and linalool (30.58%), 2-decanone (20.85%),β-fenchol (9.43%), 2-tridecanone (8.86%),β-phellandrene (5.99%), Sabinene (4.82%), andα-pinene (4.11%) were the main components. The EO and methanolic extract ofZ. alatumexhibited potent antifungal activity againstAlternaria alternata,Alternaria brassicae, andCurvularia lunata. The EO also showed significant antibacterial activity againstBacillus subtilis,Micrococcus luteus,Staphylococcus aureus, andEscherichia coli. Further, antimicrobial constituents of the EO were isolated by bioautography and preparative thin layer chromatography (PTLC) and identified asβ-fenchol and linalool using GC/MS analysis. In addition to this, the free radical scavenging activity and antioxidant potential of EO and methanolic extract/fractions ofZ. alatumwere also investigated usingin vitroassays including scavenging ability against DPPH•, reducing power and chelating ability on Fe2+ions. Our results demonstrate thatZ. alatumcould be used as a resource of antioxidant and antimicrobial compounds which may find applications in food and pesticide industries.


2012 ◽  
Vol 7 (10) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Jesús Palá-Paúl ◽  
Jaime Usano-Alemany ◽  
Elena Granda ◽  
Ana-Cristina Soria

The essential oils extracted from the young stems and leaves of Chamaecyparis lawsoniana(A.Murray) Parl. have been analysed by Gas Chromatography and Gas Chromatography coupled to Mass Spectrometry. A total of 66 compounds were identified representing around the 99% of the total oil. The oil was richer in monoterpenes than in sesquiterpenes. The only main component was limonene with a percentage composition of 77.7%. The rest of compounds that contribute to the fragrance had percentage composition lower that the 3.0%: p-cymen-7-ol (3.0%), myrcene (2.4%), camphor (2.1%), δ-elemene (1.6%), oplopanonyl acetate (1.6%), methyl perillate (1.3%), terpinen-4-ol (1.0%) and β-oplopenone 1.0%. The antibacterial and antifungal activity of this oil was also tested against different microorganisms. The only fungus tested, Candida albicans,was very sensitive to the treatment with an inhibition halos of 20mm. The oil was more effective with the Gram (+) than with Gram (-) bacteria. The inhibition halos were 12mm, 12-13mm and 12-13mm for Bacillus subtilis, Staphylococcus aureus and Micrococcus luteus respectively. We report new data of the antibacterial and antifungal activity of the essential oil of this species. The essential oil of C. lawsoniana could be considered as a good natural antibacterial and antifungal agent.


2013 ◽  
Vol 8 (9) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Dragoljub L. Miladinović ◽  
Budimir S. Ilić ◽  
Tatjana M. Mihajilov-Krstev ◽  
Dejan M. Nikolić ◽  
Olga G. Cvetković ◽  
...  

The composition and antimicrobial activity of the essential oil of Heracleum sibiricum L. (Apiaceae) was studied. The aerial part of plant was hydro-distilled and chemical composition of the essential oil was analyzed by GC and GC-MS. Forty-six compounds, corresponding to 95.12% of the total oil, were identified. Esters represented the major chemical class (69.55%) while the main constituents were octyl butanoate (36.82%), hexyl butanoate (16.08%), 1-octanol (13.62%) and octyl hexanoate (8.10%). Antibacterial activity of the essential oil and reference antibiotics against nine bacterial strains was tested by the broth microdilution method. The results of the bioassays showed that essential oil had slight antimicrobial activities against all tested microorganisms (MIC and MBC values were in the range of 2431.2 to 9724.8 μg/mL). Reference antibiotics were active in concentrations between 0.5 and 16.0 μg/mL. The results confirm that Gram-positive bacteria were more susceptible to the essential oil of H. sibiricum, in comparison with Gram-negative bacteria.


2020 ◽  
Vol 83 (7) ◽  
pp. 1261-1267
Author(s):  
TING LIU ◽  
JINGFAN WANG ◽  
XIAOMAN GONG ◽  
XIAOXIA WU ◽  
LIU LIU ◽  
...  

ABSTRACT The purpose of the present study was to determine the bioactive compounds in rosemary essential oil (REO) and tea tree essential oil (TEO) and to investigate their antibacterial and antibiofilm activities against Staphylococcus aureus and Escherichia coli in vitro. The MIC and MBC assays were performed to assess the antibacterial activity of these two EOs against S. aureus and E. coli with the broth microdilution method. A crystal violet assay was used to ascertain the effects of EOs on the biofilm formation of the test strains, and a tetrazolium bromide (MTT) assay was used to measure the level of inactivation of mature biofilms by EOs. Gas chromatography–mass spectrometry revealed 15 compounds in REO and 27 compounds in TEO, representing 97.78 and 98.13% of the total EO, respectively. Eucalyptol and α-pinene were found in high concentrations in REO, and the two major compounds in TEO were 4-terpineol and terpinolene. The MICs of REO for the two S. aureus and E. coli test strains were both 0.5 mg/mL, and the MICs of TEO for the two strains were both 0.25 mg/mL. Therefore, these EOs can significantly inhibit the formation of biofilms and induced morphological biofilm changes, as verified by scanning electron microscopy. Both EOs had destructive effects on the mature biofilm of the two test strains. TEO was more inhibitory than REO for biofilm formation by the two test strains. HIGHLIGHTS


2010 ◽  
Vol 75 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Tatjana Stevic ◽  
Katarina Savikin ◽  
Mihailo Ristic ◽  
Gordana Zdunic ◽  
Teodora Jankovic ◽  
...  

The essential oil from the leaves of the Serbian black currant cultivar Cacanska crna, obtained by hydrodistillation, was analyzed by gas Chromatography flame ionization detection and GC-mass spectrometry. The most abundant volatile compounds were ?3-carene (18.7 %), ?-caryophyllene (17.7 %), sabinene (11.6 %), cis-?-ocimene (10.6 %) and ?-terpinolene (10.6%). The antimicrobial activity of the oil was evaluated against 14 micro-organisms, including two clinical isolated strains, using the broth microdilution method. The most susceptible micro-organisms were Escherichia coli, Streptococcus faecalis, Staphylococcus aureus, Candida albicans and Trichophyton mentagrophytes isolates. Furthermore, the flavonol aglycones in the leaves after acid hydrolysis were qualitatively and quantitatively analysed by HPLC, and quercetin was found to be the dominant compound (84 mg/g dw).


2021 ◽  
Vol 15 (4) ◽  
pp. 324-329
Author(s):  
Pengxiang Lai ◽  
Xin-Chen Zhang ◽  
Lin Zhu ◽  
Xin-Yu Li ◽  
Li-Chuan Liu

The essential oil (EO) of aerial parts of Mallotus repandus (Willd.) Muell. Arg. was extracted by hydrodistillation and characterized by GC/FID and GC/MS. Fifty-one compounds comprising 97.1% of the EO were identified, of which α-humulene (18.7%), β-selinene (12.8%), aciphyllene (10.7%), (E)-caryophyllene (8.4%), α-copaene (5.5%), humulene epoxide II (4.9%) and caryophyllene oxide (4.3%) were the major compounds. The EO was evaluated for antibacterial properties using broth microdilution method and crystal-violet static biofilm formation assay. The M. repandus EO possessed a bactericidal effect against tested gram-positive bacteria strains (MIC = MBC: 0.05-0.10 mg/mL). Further, the EO showed the ability to inhibit the biofilm formation of Staphylococcus aureus. In addition, the potential synergistic effect was assessed by checkerboard method. Combination of the M. repandus EO with Streptomycin showed synergistic effects against the tested bacterial strains. This study demonstrates that M. repandus EO could be further explored as good alternative for potential pharmaceuticals.


2014 ◽  
Vol 9 (2) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Dragoljub L. Miladinović ◽  
Budimir S. Ilić ◽  
Tatjana M. Mihajilov-Krstev ◽  
Jovana L. Jović ◽  
Marija S. Marković

The chemical composition and antibacterial activity were examined of Libanotis montana Crantz subsp. leiocarpa (Heuff.) Soó. (Apiaceae) essential oil. Gas chromatography and gas chromatography/mass spectrometry were used to analyze the chemical composition of the oil. The antibacterial activity was investigated by the broth microdilution method against thirteen bacterial strains. The interactions of the essential oil and three standard antibiotics: tetracycline, streptomycin and chloramphenicol toward five selected strains were evaluated using the microdilution checkerboard assay in combination with chemometric methods: principal components analysis and hierarchical cluster analysis. Sesquiterpene hydrocarbons were the most abundant compound class in the oil (67.2%), with β-elemene (40.4%) as the major compound. The essential oil exhibited slight antibacterial activity against the tested bacterial strains in vitro, but the combinations L. montana oil-chloramphenicol and L. montana oil-tetracycline exhibited mostly either synergistic or additive interactions. These combinations reduced the minimum effective dose of the antibiotics and, consequently, minimized their adverse side effects. In contrast, the association of L. montana essential oil and streptomycin was characterized by strong antagonistic interactions against Escherichia coli ATCC 25922. In the PCA and HCA analyses, streptomycin stood out and formed a separate group.


Sign in / Sign up

Export Citation Format

Share Document