Rosemary and Tea Tree Essential Oils Exert Antibiofilm Activities In Vitro against Staphylococcus aureus and Escherichia coli

2020 ◽  
Vol 83 (7) ◽  
pp. 1261-1267
Author(s):  
TING LIU ◽  
JINGFAN WANG ◽  
XIAOMAN GONG ◽  
XIAOXIA WU ◽  
LIU LIU ◽  
...  

ABSTRACT The purpose of the present study was to determine the bioactive compounds in rosemary essential oil (REO) and tea tree essential oil (TEO) and to investigate their antibacterial and antibiofilm activities against Staphylococcus aureus and Escherichia coli in vitro. The MIC and MBC assays were performed to assess the antibacterial activity of these two EOs against S. aureus and E. coli with the broth microdilution method. A crystal violet assay was used to ascertain the effects of EOs on the biofilm formation of the test strains, and a tetrazolium bromide (MTT) assay was used to measure the level of inactivation of mature biofilms by EOs. Gas chromatography–mass spectrometry revealed 15 compounds in REO and 27 compounds in TEO, representing 97.78 and 98.13% of the total EO, respectively. Eucalyptol and α-pinene were found in high concentrations in REO, and the two major compounds in TEO were 4-terpineol and terpinolene. The MICs of REO for the two S. aureus and E. coli test strains were both 0.5 mg/mL, and the MICs of TEO for the two strains were both 0.25 mg/mL. Therefore, these EOs can significantly inhibit the formation of biofilms and induced morphological biofilm changes, as verified by scanning electron microscopy. Both EOs had destructive effects on the mature biofilm of the two test strains. TEO was more inhibitory than REO for biofilm formation by the two test strains. HIGHLIGHTS

2020 ◽  
Author(s):  
Baoguang Liu ◽  
Xiaoling Yuan ◽  
Yiheng Chen ◽  
Xiaoshen Li ◽  
Ming Bai ◽  
...  

Abstract Background The spread of ESBLs-producing bacteria has been strikingly rapid in many regions of the world and it causes therapeutic difficulties in everyday practice. The aims of this study were to investigate the prevalence and susceptibilities of ESBLs-producing Escherichia coli isolates from healthy Tibetan yaks in China, to evaluate the activity of drug combinations on ESBLs-producing E. coli isolates. Methods From July 2018 to August 2019, a total of 750 nasal swab samples were tested for the presence of E. coli and ESBLs-producing strains. The MICs of 11 antimicrobial agents alone and combinations with sulbactam, EDTA or sulbactam-EDTA against 240 ESBLs-producing E.coli strains were determined by the broth microdilution method. Results Overall, 59.87% (n = 449) of the samples were positive for E. coli, 240 (53.45%) of 449 E. coli isolates were confirmed to be ESBLs-producing. The addition of sulbactam to the third generation cephalosporins, amikacin and fosfomycin for all isolates resulted in low MICs, increasing the level of susceptibility from 0, 0 and 0% to 50 ~ 87.5, 4.2 and 100% respectively. The addition of EDTA to fluoroquinolones, doxycycline, florfenicol, amikacin and fosfomycin, showed improved activities and resulted in low MICs, increasing the level of susceptibility from 0, 0, 8.3, 0 and 0% to 4.2 ~ 29.2, 33.3, 33.3, 66.7 and 45.8%, respectively. All other antibacterials (except fluoroquinolones, doxycycline and florfenicol), when combined with sulbactam-EDTA, were found to be more active than combinations only with sulbactam or with EDTA against most of isolates, with lower MIC50s and MIC90s. Conclusion In conclusion, ESBLs-producing E. coli isolates were widespread in healthy Tibetan yaks in China. ESBLs-producing E. coli isolates exhibited varying degrees of multidrug resistance. This study these findings suggested that sulbactam can enhance activity of β-lactams and some non-β-lactams of antimicrobial agents and had a synergistic effects with EDTA in improving activities of some families of antimicrobials.


2020 ◽  
Vol 7 (1) ◽  
pp. 26-32
Author(s):  
Bendella Amina nor elhouda ◽  
Ghazi Kheira ◽  
Meliani Samia

AbstractThe aim of this study is to test two different methods for evaluating the in vitro antibacterial effect of Thymus fontanesii Boiss. et Reut. essential oil against standard and clinical bacterial strains responsible for bovine mastitis: the disc diffusion method or the aromatogram which allows the demonstration of the antibacterial power of essential oils on the bacterial strains tested, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and two strains isolated from bovine mastitis milk S. aureus and E. coli. The inhibition activity of the essential oil of T. fontanesii on bacterial strains by the two methods shows that the antimicrobial power of this oil is very important and is characterized by bactericidal and bacteriostatic action against gram negative and gram positive bacteria. The antimicrobial evaluation by the aromatogram showed good antibacterial activity against all the strains tested, the zones of inhibition of the bacteria were between 23,33±1,527mm and 37,5±3,535 mm. The search for minimum inhibitory concentrations MIC and bactericides CMB made it possible to quantitatively assess the antimicrobial power of this essential oil. In this work, the MIC was 0,625 µl/ml for all strains tested, and the lowest CMB was that of T. fontanesii against E. coli ATCC 25922 was 0,625 µl/ml.


2014 ◽  
Vol 9 (2) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Dragoljub L. Miladinović ◽  
Budimir S. Ilić ◽  
Tatjana M. Mihajilov-Krstev ◽  
Jovana L. Jović ◽  
Marija S. Marković

The chemical composition and antibacterial activity were examined of Libanotis montana Crantz subsp. leiocarpa (Heuff.) Soó. (Apiaceae) essential oil. Gas chromatography and gas chromatography/mass spectrometry were used to analyze the chemical composition of the oil. The antibacterial activity was investigated by the broth microdilution method against thirteen bacterial strains. The interactions of the essential oil and three standard antibiotics: tetracycline, streptomycin and chloramphenicol toward five selected strains were evaluated using the microdilution checkerboard assay in combination with chemometric methods: principal components analysis and hierarchical cluster analysis. Sesquiterpene hydrocarbons were the most abundant compound class in the oil (67.2%), with β-elemene (40.4%) as the major compound. The essential oil exhibited slight antibacterial activity against the tested bacterial strains in vitro, but the combinations L. montana oil-chloramphenicol and L. montana oil-tetracycline exhibited mostly either synergistic or additive interactions. These combinations reduced the minimum effective dose of the antibiotics and, consequently, minimized their adverse side effects. In contrast, the association of L. montana essential oil and streptomycin was characterized by strong antagonistic interactions against Escherichia coli ATCC 25922. In the PCA and HCA analyses, streptomycin stood out and formed a separate group.


2011 ◽  
Vol 80 (4) ◽  
pp. 343-348 ◽  
Author(s):  
Radka Hulánková ◽  
Gabriela Bořilová

In vitro inhibition of foodborne pathogens via action of natural antimicrobials – caprylic acid (CA) and essential oil from Origanum vulgare L. (OEO) with high carvacrol content (72%) was evaluated. For 15 Salmonella strains the minimum inhibitory concentration (MIC) determined by broth microdilution method ranged between 3.67–4.33 μl·ml-1 for CA and between 0.48–0.57 μl·ml-1 for OEO. For 7 Listeria monocytogenes strains the MIC ranged between 2.17–2.83 μl·ml-1 for CA and between 0.52–0.58 μl·ml-1 for OEO. Type strains of Escherichia coli O157:H7 and Staphylococcus aureus were tested, too, with MIC of CA 3.60 μl·ml-1 and 3.20 μl·ml-1 and MIC of OEO 0.51 μl·ml-1 and 0.48 μl·ml-1, respectively. Furthermore, it was found that the MIC of CA can be decreased by even low addition (0.05%) of citric or acetic acid and to a lesser extent by lactic acid, whereas the MICs of OEO did not notably decrease. Combined application of CA and OEO determined by FIC index led only to an additive effect (0.5 ≤ FIC ≤ 1). Combination of natural additives OEO, CA and eventually acetic or citric acid seems to have the potential to be an effective mixture for inhibition of foodborne pathogens, predominantly Salmonella spp. and L. monocytogenes, even in only slightly acidic food.


2020 ◽  
Vol 75 (12) ◽  
pp. 3563-3567 ◽  
Author(s):  
Sachin S Bhagwat ◽  
Periasamy Hariharan ◽  
Prashant R Joshi ◽  
Snehal R Palwe ◽  
Rahul Shrivastava ◽  
...  

Abstract Background Recent reports reveal the emergence of Escherichia coli isolates harbouring a novel resistance mechanism based on four-amino-acid inserts in PBP3. These organisms concomitantly expressed ESBLs or/and serine-/metallo-carbapenemases and were phenotypically detected by elevated aztreonam/avibactam MICs. Objectives The in vitro activities of the investigational antibiotic cefepime/zidebactam and approved antibiotics (ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/relebactam and others) were determined against E. coli isolates harbouring four-amino-acid inserts in PBP3. Methods Whole-genome sequenced E. coli isolates (n = 89) collected from a large tertiary care hospital in Southern India (n = 64) and from 12 tertiary care hospitals located across India (n = 25) during 2016–18, showing aztreonam/avibactam MICs ≥1 mg/L (≥4 times the aztreonam epidemiological cut-off) were included in this study. The MICs of antibiotics were determined using the reference broth microdilution method. Results Four-amino-acid inserts [YRIK (n = 30) and YRIN (n = 53)] were found in 83/89 isolates. Among 83 isolates, 65 carried carbapenemase genes [blaNDM (n = 39), blaOXA-48-like (n = 11) and blaNDM + blaOXA-48-like (n = 15)] and 18 isolates produced ESBLs/class C β-lactamases only. At least 16 unique STs were noted. Cefepime/zidebactam demonstrated potent activity, with all isolates inhibited at ≤1 mg/L. Comparator antibiotics including ceftazidime/avibactam and imipenem/relebactam showed limited activities. Conclusions E. coli isolates concurrently harbouring four-amino-acid inserts in PBP3 and NDM are an emerging therapeutic challenge. Assisted by the PBP2-binding action of zidebactam, the cefepime/zidebactam combination overcomes both target modification (PBP3 insert)- and carbapenemase (NDM)-mediated resistance mechanisms in E. coli.


2019 ◽  
Vol 69 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Saša Polović ◽  
Vanja Ljoljić Bilić ◽  
Ana Budimir ◽  
Darko Kontrec ◽  
Nives Galić ◽  
...  

Abstract Aroylhydrazones 1–13 were screened for antimicrobial and antibiofilm activities in vitro. N′-(2-hydroxy-phenylmethylidene)-3-pyridinecarbohydrazide (2), N′-(5-chloro-2-hydroxyphenyl-methylidene)-3-pyridinecarbohydrazide (10), N′-(3,5-chloro-2-hydroxyphenylmethylidene)-3-pyridinecarbohydrazide (11), and N′-(2-hydroxy-5-nitrophenylmethylidene)-3-pyridinecarbohydrazide (12) showed antibacterial activity against Escherichia coli, with MIC values (in µmol mL−1) of 0.18–0.23, 0.11–0.20, 0.16–0.17 and 0.35–0.37, resp. Compounds 11 and 12, as well as N′-(2-hydroxy-3-methoxyphenylmethylidene)-3-pyridinecarbohydrazide (6) and N′-(2-hydroxy-5- methoxyphenylmethylidene)-3-pyridinecarbohydrazide (8) showed antibacterial activity against Staphylococcus aureus, with the lowest MIC values of 0.005–0.2, 0.05–0.12, 0.06–0.48 and 0.17–0.99 µmol mL−1. N′-(2-hydroxy-5-methoxyphenylmethylidene)-3-pyridinecarbohydrazide (7) showed antifungal activity against both fluconazole resistant and susceptible C. albicans strains with IC90 range of 0.18–0.1 µmol mL−1. Only compound 11 showed activity against C. albicans ATCC 10231 comparable to the activity of nystatin (the lowest MIC 4.0 ×10−2 vs. 1.7 × 10−2 µmol mL−1). Good activity regarding multi-resistant clinical strains was observed for compound 12 against MRSA strain (MIC 0.02 µmol mL−1) and compounds 2, 6 and 12 against ESBL+ E. coli MFBF 12794, with the lowest MIC for compound 12 (IC50 0.16 µmol mL−1). Anti-biofilm activity was found for compounds 2 (MBFIC 0.015–0.02 µmol mL−1 against MRSA) and 12 (MBFIC 0.013 µmol mL−1 against EBSL+ E. coli). In the case of compound 2 against MRSA biofilm formation, MBFIC values were comparable to those of gentamicin sulphate, whereas in the case of compound 12 and EBSL+ E. coli even more favourable activity compared to gentamicin was observed.


2020 ◽  
Vol 24 (19) ◽  
pp. 2272-2282
Author(s):  
Vu Ngoc Toan ◽  
Nguyen Minh Tri ◽  
Nguyen Dinh Thanh

Several 6- and 7-alkoxy-2-oxo-2H-chromene-4-carbaldehydes were prepared from corresponding alkyl ethers of 6- and 7-hydroxy-4-methyl-2-oxo-2H-chromen-2-ones by oxidation using selenium dioxide. 6- and 7-Alkoxy-4-methyl-2H-chromenes were obtained with yields of 57-85%. Corresponding 4-carbaldehyde derivatives were prepared with yields of 41-67%. Thiosemicarbazones of these aldehydes with D-galactose moiety were synthesized by reaction of these aldehydes with N-(2,3,4,6-tetra-O-acetyl-β-Dgalactopyranosyl) thiosemicarbazide with yields of 62-74%. These thiosemicarbazones were screened for their antibacterial and antifungal activities in vitro against bacteria, such as Staphylococcus aureus, Escherichia coli, and fungi, such as Aspergillus niger, Candida albicans. Several compounds exhibited strong inhibitory activity with MIC values of 0.78- 1.56 μM, including 8a (against S. aureus, E. coli, and C. albicans), 8d (against E. coli and A. niger), 9a (against S. aureus), and 9c (against S. aureus and C. albicans).


2020 ◽  
Vol 10 (3) ◽  
pp. 316-329
Author(s):  
Fateme Mirzajani ◽  
Amin Hamidi

Introduction: In this project, the growth and volatile metabolites profiles of Escherichia coli (E. coli ) and Staphylococcus aureus were monitored under the influence of silver base chemical, nanoparticle and ultra-highly diluted compounds. Materials & Methods: The treatments were done for 12000 life cycles using silver nanoparticles (AgNPs) as well as ultra-highly diluted Argentum nitricum (Arg-n). Volatile organic metabolites analysis was performed using gas chromatography mass spectrometry (GC-MS). The results indicated that AgNPs treatment made the bacteria resistant and adapted to growth in the nanoparticle condition. The use of ultra-highly diluted Arg-n initially increased growth but it decreased later. Also, with the continuous usage of these materials, no more bacterial growth was observed. Results: The most important compounds produced by E. coli are Acetophenone, Octyl acetate, Styrene, 1,8-cineole, 4-t-butyl-2-(1-methyl-2-nitroethyl)cyclohexane, hexadecane and 2-Undecanol. The main compounds derived from S. aureus are Acetophenone,1,8-cineole, Benzaldehyde, 2-Hexan-1-ol, Tridecanol, Dimethyl Octenal and tetradecane. Acetophenone and 1,8-cineole were common and produced by both organisms. Conclusion: Based on the origin of the produced volatiles, main volatiles percentage of untreated sample is hydrocarbon (>50%), while bacteria treatments convert the ratio in to aldehydes, ketones and alcohols in the case of AgNPs, (>80%) and aldehydes, ketones and terpenes in the case of Arg-n (>70%).


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2319
Author(s):  
Klara Lalouckova ◽  
Lucie Mala ◽  
Petr Marsik ◽  
Eva Skrivanova

Ultra-high performance liquid chromatography/mass spectrometry showed soyasaponin I and the isoflavones daidzein, genistein, and glycitein to be the main components of the methanolic extract of the Korean soybean fermented product doenjang, which is known to be a rich source of naturally occurring bioactive substances, at average contents of 515.40, 236.30, 131.23, and 29.00 ng/mg, respectively. The antimicrobial activity of the methanolic extract of doenjang against nine Staphylococcusaureus strains was determined in vitro by the broth microdilution method to investigate its potential to serve as an alternative antibacterial compound. The results suggest that the extract is an effective antistaphylococcal agent at concentrations of 2048–4096 µg/mL. Moreover, the tested extract also showed the ability to inhibit the growth of both methicillin-sensitive and methicillin-resistant animal and clinical S. aureus isolates. The growth kinetics of the chosen strains of S. aureus at the minimum inhibitory concentration of the methanolic extract of doenjang support the idea that the tested extract acts as an antibacterial compound. To the best of our knowledge, this is the first report on the antistaphylococcal action of the methanolic extract of doenjang thus, additional studies including in vivo testing are necessary to confirm this hypothesis.


2015 ◽  
Vol 59 (6) ◽  
pp. 3059-3065 ◽  
Author(s):  
C. Pitart ◽  
F. Marco ◽  
T. A. Keating ◽  
W. W. Nichols ◽  
J. Vila

ABSTRACTCeftazidime-avibactam and comparator antibiotics were tested by the broth microdilution method against 200Enterobacteriaceaeand 25Pseudomonas aeruginosastrains resistant to fluoroquinolones (including strains with the extended-spectrum β-lactamase [ESBL] phenotype and ceftazidime-resistant strains) collected from our institution. The MICs and mechanisms of resistance to fluoroquinolone were also studied. Ninety-nine percent of fluoroquinolone-resistantEnterobacteriaceaestrains were inhibited at a ceftazidime-avibactam MIC of ≤4 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference). Ceftazidime-avibactam was very active against ESBLEscherichia coli(MIC90of 0.25 mg/liter), ESBLKlebsiella pneumoniae(MIC90of 0.5 mg/liter), ceftazidime-resistant AmpC-producing species (MIC90of 1 mg/liter), non-ESBLE. coli(MIC90of ≤0.125 mg/liter), non-ESBLK. pneumoniae(MIC90of 0.25 mg/liter), and ceftazidime-nonresistant AmpC-producing species (MIC90of ≤0.5 mg/liter). Ninety-six percent of fluoroquinolone-resistantP. aeruginosastrains were inhibited at a ceftazidime-avibactam MIC of ≤8 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference), with a MIC90of 8 mg/liter. Additionally, fluoroquinolone-resistant mutants from each species tested were obtainedin vitrofrom two strains, one susceptible to ceftazidime and the other a β-lactamase producer with a high MIC against ceftazidime but susceptible to ceftazidime-avibactam. Thereby, the impact of fluoroquinolone resistance on the activity of ceftazidime-avibactam could be assessed. The MIC90values of ceftazidime-avibactam for the fluoroquinolone-resistant mutant strains ofEnterobacteriaceaeandP. aeruginosawere ≤4 mg/liter and ≤8 mg/liter, respectively. We conclude that the presence of fluoroquinolone resistance does not affectEnterobacteriaceaeandP. aeruginosasusceptibility to ceftazidime-avibactam; that is, there is no cross-resistance.


Sign in / Sign up

Export Citation Format

Share Document