scholarly journals Chemical Composition and Antifungal Activity of Aaronsohnia pubescens Essential Oil from Algeria

2015 ◽  
Vol 10 (1) ◽  
pp. 1934578X1501000
Author(s):  
Ahmed Makhloufi ◽  
L. Ben Larbi ◽  
Abdallah Moussaoui ◽  
Hamadi A. Lazouni ◽  
Abderrahmane Romane ◽  
...  

In the present study, the chemical composition of the essential oil obtained from the aerial parts of Aaronsohnia pubescens (Desf.) K. Bremer & Humphries (Asteraceae), a chamomile-like medicinal plant, was studied. Using both GC-MS and GC-FID methods, 58 volatile compounds could be identified representing 96.6% of the total essential oil composition. The main compounds in the essential oil were monoterpene hydrocarbons such as ( Z)-β-ocimene (53.8%), myrcene (15.2%) and α-pinene (7.7%). Moreover, the essential oil of A. pubescens was tested for its antifungal activity against seven strains of phytopathogenic fungi, i.e. Aspergillus niger, A. flavus, Penicillium purpurogenum, P. jensenii, P. expansum, and Fusarium oxysporum f.sp. albedinis, using the disc diffusion method. With the exception of P. jensenii, A. pubescens essential oil demonstrated a considerable antifungal activity against all tested strains. The present results confirm the traditional use of A. pubescens as a food preservative.

2012 ◽  
Vol 7 (9) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Megil J. McNeil ◽  
Roy B. R. Porter ◽  
Lawrence A. D. Williams

The chemical composition of the essential oil obtained from the aerial parts of Cleome serrata by hydrodistillation was analyzed by employing GC-FID, GC-MS and RI. Fourteen compounds comprising 90.4% of the total oil composition were characterized. The main components identified were ( Z)-phytol (53.0%) and di(2-ethylhexyl)-phthalate (DEHP) (14.7%). The oil was evaluated for its in vitro antimicrobial activities against nine pathogenic microorganisms using the filter paper disc diffusion method. Moderate antimicrobial activity was observed against five of the pathogens assayed. In addition, the essential oil was tested against the sweet potato weevil, Cylas formicarius elegantulus. Strong knockdown insecticidal activity was observed.


2013 ◽  
Vol 8 (4) ◽  
pp. 1934578X1300800
Author(s):  
Daniele Fraternale ◽  
Salvatore Genovese ◽  
Donata Ricci

The chemical composition and antimicrobial activity of the essential oils obtained from the flowering aerial parts and ripe fruits of Echinophora spinosa L. (Apiaceae) from central Italy were analyzed by GC/MS. The major constituents of the oil from the aerial parts were β-phellandrene (34.7%), myristicin (16.5%), δ3-carene (12.6%), α-pinene (6.7%) and α-phellandrene (6.2%), and of the oil from the ripe fruits p-cymene (50.2%), myristicin (15.3%), α-pinene (15.1%) and α-phellandrene (8.1%). The two oils showed good antimicrobial activity against Clostridium difficile, C perfringens, Enterococcus faecalis, Eubacterium limosum, Peptostreptococcus anaerobius and Candida albicans with MIC values respectively of 0.25, 0.25, 0.25, 0.25, 2.25, and 0.50%, v/v, and 0.13, 0.13, 0.13, 0.13, 2.25, 0.50%, v/v, for aerial parts and ripe fruits respectively. A less significant antimicrobial activity against bifidobacteria and lactobacilli, very important in the intestinal microflora, was also detected, with MIC values higher than 4.0%, v/v.


Author(s):  
Abderazak Abadi ◽  
Aicha Hassani

In previous work [1], the essential oil of the aerial parts of Marrubium vulgare L. obtained by hydrodistillation was analysed by gas chromatography coupled to mass spectrometry (GC-MS) in order to determine their chemical composition. Fifty (50) components in the oil of M. vulgare were identified. The results demonstrated that the major components of the essential oil were: 4,8,12,16-Tetramethyl heptadecan-4-olid (16.97 %), Germacrene D-4-ol (9.61 %), α- pinéne (9.37 %), Phytol (4.87 %), Dehydro-sabina ketone (4.12 %), Piperitone (3.27 %), δ-Cadinene (3.13 %), 1-Octen-3-ol (2.35 %) and Benzaldehyde (2.31 %). In this study, the antioxidant properties of essential oil were examined. The results showed that this oil can be considered an effective source of antioxidants of natural origin. This is the first report on chemical composition of M. vulgare essential oil cultivated in Algeria and the original study on the antioxidant activity of M. vulgare essential oil. The antioxidant activity was investigated with one method: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method.


Author(s):  
Belbache Hanene ◽  
Mechehoud Youcef ◽  
Chalchat Jean-Claude ◽  
Figueredo Gilles ◽  
Chalard Pierre ◽  
...  

The essential oil of the aerial parts of Centaurea sempervirens L. (Asteraceae), synonym : Cheirolophus sempervirens (L.) Pomel, was obtained by steam distillation and analyzed by GC-FID and GC-MS. 30 components were identified corresponding to 78.5% of the total oil. Among the identified constituents, oxygenated compounds represented 33.4%, from which 21.2% were hydrocarbons, 10.7% were sesquiterpenes. The non oxygenated compounds were hydrocarbons (9.8%). Phthalates represented 35.3% of the total oil. The major components were 6,10,14-trimethylpentadecan-2-one (12.4%) and epi-torilenol (5.1%). This is the first report on the chemical composition of the essential oil of this species.


2008 ◽  
Vol 1 (1) ◽  
pp. 164-171 ◽  
Author(s):  
Koffi Koba ◽  
P W Poutouli ◽  
Christine Raynaud ◽  
Komla Sanda

The aerial parts of Ocimum gratissimum L. (Lamiaceae) harvested in Togo was steam-distilled and investigated for essential oil composition (GC and GC/MS) and in vitro antifungal activities. Thymol (31.79 %), p-cymene (15.57 %) and γ-terpinene (12.34 %) and were the major components of the oil. Other notable components identified in this oil were myrcene (6.94 %) and α-thujene (6.11 %).The in vitro antifungal activity was recorded with the minimum inhibitory concentrations (MICs) ranging from 80 to 150 µl.l-1, 150 to 500 µl.l-1  and from 100 to 150 µl.l-1 respectively on dermatophytes, imperfect filamentous fungi and pathogenic yeasts. Likewise, on tested fungi the minimum fungicidal concentration (MFC) varied from 300 µl.l-1 to 500 µl.l-1, 500 to 700 µl.l-1 and from 250 to 300 µl.l-1, respectively on dermatophytes, imperfect filamentous fungi and pathogenic yeasts. Keywords: O.gratissimum,  Antifungal, Essential oil; Thymol. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i1.1131 


2018 ◽  
Vol 19 (45) ◽  
pp. 38-43 ◽  
Author(s):  
Uugangerel Erdenetsogt ◽  
Choijamts Gotov ◽  
Kerstin Voigt ◽  
Stefan Bartram ◽  
Wilhelm Boland ◽  
...  

The chemical composition and antimicrobial activity of the essential oil from the aerial parts of Pyrethrum pulchrum Ledeb. were investigated. Dried plant material was hydro-distillated yielding 0.1% of essential oil. The oil was analyzed by GC-MS techniques. Fifty-five compounds were identified representing 99.7% of the total oil composition. Camphor was the predominant compound (33.9%) followed by linalool (21.1%) and α-pinene (9.0%). The antimicrobial activity of the oil was determined using the disk diffusion method against Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus and Enterococcus faecalis), Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), Mycobacterium vaccae and fungi (Candida albicans, Sporidiobolus salmonicolor and Penicillum notatum). The essential oil of P. pulchrum displays an intermediate activity against selected bacteria.


2009 ◽  
Vol 4 (4) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Daniele Fraternale ◽  
Anahi Bucchini ◽  
Laura Giamperi ◽  
Donata Ricci

The chemical composition of the essential oil of Ballota nigra L. ssp foetida obtained from the flowering aerial parts was analyzed by GC/MS. From the 37 identified constituents of the oil, β-caryophyllene (20.0%), germacrene D (18.0%) and caryophyllene oxide (15.0%) were the major components. The oil was active against both Gram-negative and Gram-positive bacteria as well as against three Candida species.


2006 ◽  
Vol 49 (6) ◽  
pp. 867-871 ◽  
Author(s):  
Terezinha de Jesus Faria ◽  
Rafael Sottero Ferreira ◽  
Lidiane Yassumoto ◽  
José Roberto Pinto de Souza ◽  
Noemia Kazue Ishikawa ◽  
...  

An investigation of antifungal activity of the essential oil obtained by steam-distillation (1.1% w/w) of the aerial parts of Ocimum gratissimum and of an ethanolic extract from the steam-distillation residue was carried out using the agar diffusion method. The results revealed that the essential oil inhibited the growth of all fungi tested, including the phytopathogens, Botryosphaeria rhodina, Rhizoctonia sp. and two strains of Alternaria sp., while the extract from the residue was inactive. The essential oil was subjected to TLC bioautography used to detect fungitoxic constituents. The compound that showed antifungal activity was isolated and identified as eugenol. GC/MS analysis showed that eugenol was the main constituent of the essential oil studied. The antifungal activity of eugenol was evaluated against a species of Alternaria isolated from tomato (A1) and Penicillium chrysogenum. The minimal inhibitory concentrations of eugenol were 0.16 and 0.31 mg/disc for Alternaria sp. (A1) and P. chrysogenum, respectively.


2016 ◽  
Vol 11 (4) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Ivana R. Kostevski ◽  
Goran M. Petrović ◽  
Gordana S. Stojanović ◽  
Jelena G. Stamenković ◽  
Bojan K Zlatković

This study reports the essential oil composition and headspace volatiles profile of Achillea coarctata Poir. from Serbia. The inflorescences, stems and leaves, and the aerial parts of A. coarctata were analyzed separately. Germacrene D, α-terpineol and 1,8-cineole were the main constituents of the aerial parts essential oil; 1,8-cineole, cis-cadin-4-en-7-ol and α-terpineol were the most dominant compounds in the inflorescence essential oil, while the most abundant components in the stem and leaf oil were germacrene D, cis-cadin-4-en-7-ol and ledol. The percentages of monoterpenoids and sesquiterpenoids in the aerial parts were the same, while there were differences in distribution of these compound classes in inflorescence and stem and leaf essential oils. The major components of the headspace volatiles were the same for aerial parts, inflorescence and stem and leaves: 1,8-cineole, β-pinene and α-pinene.


Sign in / Sign up

Export Citation Format

Share Document