scholarly journals Essential Oil Composition of Centaurea sempervirens L. (Asteraceae)

Author(s):  
Belbache Hanene ◽  
Mechehoud Youcef ◽  
Chalchat Jean-Claude ◽  
Figueredo Gilles ◽  
Chalard Pierre ◽  
...  

The essential oil of the aerial parts of Centaurea sempervirens L. (Asteraceae), synonym : Cheirolophus sempervirens (L.) Pomel, was obtained by steam distillation and analyzed by GC-FID and GC-MS. 30 components were identified corresponding to 78.5% of the total oil. Among the identified constituents, oxygenated compounds represented 33.4%, from which 21.2% were hydrocarbons, 10.7% were sesquiterpenes. The non oxygenated compounds were hydrocarbons (9.8%). Phthalates represented 35.3% of the total oil. The major components were 6,10,14-trimethylpentadecan-2-one (12.4%) and epi-torilenol (5.1%). This is the first report on the chemical composition of the essential oil of this species.

2009 ◽  
Vol 4 (7) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Rajesh K. Joshi ◽  
Chitra Pande ◽  
Mohammad H. K. Mujawar ◽  
Sanjiva D. Kholkute

The essential oil composition of the aerial parts of Anaphalis nubigena DC. var. monocephala (DC.) C. B. Clarke collected from Pindari glacier at a height of 3300 m, was analyzed by using GC and GC/MS. Sixty components were identified, accounting for 95.9% of the total oil. The main constituents were α-guaiene (12.3%), γ-muurolene (10.4%), γ-cadinene (8.3%), α-muurolol (7.4%), α-gurjunene (6.0%) and α-bulnesene (5.8%). The oil was found to be rich in sesquiterpene hydrocarbons (60.1%). The oil was active against Escherichia coli (NCIM 2065) and Klebsiella pneumoniae (NCIM 2957), with MIC values of 125 μg/mL and 500 μg/mL, respectively.


2015 ◽  
Vol 9 (2) ◽  
pp. 25-27
Author(s):  
N. Rastakhiz ◽  
P. Abereoomand Azar ◽  
M. Saber Tehrani ◽  
M. Moradalizadeh ◽  
K. Larijani

Artemisia lehmanniana Bunge. is a genus of small herbs and shrubs found in northern temperate regions. It belongs to the important family compositae(Asteraceae). The chemical composition of the  essential oilsfrom aerial parts of A.lehmanniana growing wild in Iran has been studied. Oils were obtained byhydrodistillation(HD), microwave assisted hydrodistillation (MAHD) and solid phase micro extraction (SPME) methods and analyzed by GC and GC-MS. Nine compounds were identified in essential oil from plant was extracted using HD representing 94.7% of the total oil. The main constituents of the oil were camphor(52.7%),1,8-cineol(21.2%),cis-thujone(8.2%) and octane(5.0%).Ten compounds were identified in essential oil from plant was extracted using MAHD representing 96.5% of the total oil.The main constituents of the oil were camphor(40.8%),1,8-cineole(30.9%), trans-thujone (8.5%) and camphene(7.0%). five compounds were identified in essential oil from plant was extracted using SPME representing 97.7% of the total oil. The main constituents of oil were camphor(40.8%),1,8-cineol(32.9%),cis-thujone(12.0%) and camphene(6.7%).DOI: http://dx.doi.org/10.3126/ijls.v9i2.12044 International Journal of Life Sciences 9 (2) : 2015; 25-27


Author(s):  
El Hanbali F Barrero A.F

Abstract- The essential oil composition from the aerial parts of Ormenis africana (Asteraceae), an endemic species from Morocco, has been investigated by GC/MS. A total of 31 compounds were identified, representing 77%. After fractionation by column chromatography, the main compound was isolated and its structure elucidated by NMR spectroscopy. The essential oil was dominated by oxygenated compounds with spathulenol (45.8%) followed by camphor (7.1%), -cadinol (5.9%) and -bisabolol (5.9%) as the main compounds. This oil can be classified as spathulenol-type according to its spathulenol content. In vitro the antibacterial activity of the whole essential oil against three Gram positive (Bacillus cereus, Enterococcus faecalis, Streptococcus C) bacteria and three Gram negative (Proteus vulgaris, Escherichia coli, Pseudomonas aeroginosa) bacteria, showed significant results. Keywords: Asteraceae, Ormenis africana, Essential oil, Spathulenol, Antibacterial activity.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101
Author(s):  
Kaan Polatoğlua ◽  
Betül Demirci ◽  
İhsan Çalιş ◽  
Kemal Hüsnü Can Başer

The essential oil of aerial parts of Helichrysum conglobatum (Viv.) Steudel. (Asteraceae) from Cyprus was analyzed by GC and GC-MS. The essential oil yield was 0.01, v/w. Forty five compounds were identified in the oil comprising 96.1% of the total. The essential oil was mainly composed of sesquiterpene type compounds and oxygenated sesquiterpene derivatives. The main components of the oil were β-caryophyllene (14.6%), γ-curcumene (14.1%), hexadecanoic acid (13.5%), tetradecanoic acid (7.5%), rosifoliol (5.4%) and δ-cadinene (5.3%). This is the first report on the essential oil composition of H. conglobatum from Cyprus.


2012 ◽  
Vol 7 (9) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Megil J. McNeil ◽  
Roy B. R. Porter ◽  
Lawrence A. D. Williams

The chemical composition of the essential oil obtained from the aerial parts of Cleome serrata by hydrodistillation was analyzed by employing GC-FID, GC-MS and RI. Fourteen compounds comprising 90.4% of the total oil composition were characterized. The main components identified were ( Z)-phytol (53.0%) and di(2-ethylhexyl)-phthalate (DEHP) (14.7%). The oil was evaluated for its in vitro antimicrobial activities against nine pathogenic microorganisms using the filter paper disc diffusion method. Moderate antimicrobial activity was observed against five of the pathogens assayed. In addition, the essential oil was tested against the sweet potato weevil, Cylas formicarius elegantulus. Strong knockdown insecticidal activity was observed.


2010 ◽  
Vol 5 (1) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Anne Orav ◽  
Janne Sepp ◽  
Tiiu Kailas ◽  
Mati Müürisepp ◽  
Elmar Arak ◽  
...  

Variations in the essential oil composition of aerial parts of pineapple weed (Chamomilla suaveolens (Pursh) Rydb.) growing wild in Estonia, were determined using GC/FID and GC/MS. Forty-four components were identified, representing over 90% of the total oil. Nine compounds have not been mentioned in the literature before. The principal biologically active compounds in C. suaveolens oils were (Z)-en-yne-dicycloether (17.0 – 40.7%), (E)-β-farnesene (19.5– 32.2%), geranyl isovaleriate (8.4 –18.4%), palmitic acid (0.3 – 9.4%) and myrcene (1.1 – 7.9%). The investigation seems to approve the benefit of using aerial parts of pineapple weed as the substitute for flowers.


2013 ◽  
Vol 8 (4) ◽  
pp. 1934578X1300800
Author(s):  
Daniele Fraternale ◽  
Salvatore Genovese ◽  
Donata Ricci

The chemical composition and antimicrobial activity of the essential oils obtained from the flowering aerial parts and ripe fruits of Echinophora spinosa L. (Apiaceae) from central Italy were analyzed by GC/MS. The major constituents of the oil from the aerial parts were β-phellandrene (34.7%), myristicin (16.5%), δ3-carene (12.6%), α-pinene (6.7%) and α-phellandrene (6.2%), and of the oil from the ripe fruits p-cymene (50.2%), myristicin (15.3%), α-pinene (15.1%) and α-phellandrene (8.1%). The two oils showed good antimicrobial activity against Clostridium difficile, C perfringens, Enterococcus faecalis, Eubacterium limosum, Peptostreptococcus anaerobius and Candida albicans with MIC values respectively of 0.25, 0.25, 0.25, 0.25, 2.25, and 0.50%, v/v, and 0.13, 0.13, 0.13, 0.13, 2.25, 0.50%, v/v, for aerial parts and ripe fruits respectively. A less significant antimicrobial activity against bifidobacteria and lactobacilli, very important in the intestinal microflora, was also detected, with MIC values higher than 4.0%, v/v.


2013 ◽  
Vol 8 (3) ◽  
pp. 1934578X1300800
Author(s):  
Rajesh K. Joshi

The essential oil composition from the aerial parts of Baccharoides lilacina (Dalzell & A. Gibson) M. R. Almeida was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). A total of 41 compounds have been identified, representing 97.4% of the total oil. The main constituents were identified as β-caryophyllene (27.7%), epi-α-cadinol (25.1%), caryophyllene oxide (9.9%), α-muurolol (7.6%), α-cadinene (6.1%) and α-cadinol 4.5%). The oil was found to be rich in oxygenated sesquiterpenes (47.1%) and sesquiterpene hydrocarbons (46.2%).


Author(s):  
Min Seo ◽  
Kandhasamy Sowndhararajan ◽  
Songmun Kim

<p><strong>Objective: </strong>In the present study, the influence of harvesting time (April, June, August and October 2015) on the essential oil composition of <em>Abies koreana</em> twigs from Korea was investigated.</p><p><strong>Methods: </strong>The essential oil from the twigs of <em>A. koreana</em> was isolated by steam distillation and its chemical composition was determined by gas chromatography-mass spectrometry (GC-MS).</p><p><strong>Results: </strong>The essential oil yield was found to vary from 0.76 to 1.20% depending on the month of harvesting. The GC-MS analysis revealed the identification of 26 different essential oil components from the twigs harvested in the months of April, June, August and October, which were mostly monoterpene hydrocarbons (57.63–72.38%) followed by oxygenated monoterpenes (18.82–25.96%).<strong> </strong>Harvesting time mainly influenced on the concentration of the major components of the essential oil from the twigs of <em>A. koreana</em>. Limonene (17.38–31.13%), bornyl acetate (13.22–21.17%), camphene (12.56–13.26%), α-pinene (11.05–13.02%), β-pinene (4.55–5.70%), 3-carene (5.21–6.43%) and β-eudesmol (1.49–8.24%) were detected as the major components in the essential oil.</p><p><strong>Conclusion: </strong>The main differences between the essential oil compositions of four different months can be referred to limonene and bornyl acetate. The results showed considerable variations in the composition of essential oil, particularly quantitative variation during different harvesting months.</p>


HortScience ◽  
2013 ◽  
Vol 48 (11) ◽  
pp. 1393-1396 ◽  
Author(s):  
Valtcho D. Zheljazkov ◽  
Tess Astatkie ◽  
Barry O'Brocki ◽  
Ekaterina Jeliazkova

Anise (Pimpinella anisum L.) is a spice, an essential oil crop, and a medicinal plant with a long history of use. Anise seed oil is extracted from anise seed through steam distillation. There is no experimentally established optimal time for distillation of anise seed. We hypothesized that the distillation time (DT) can be customized for optimum yield and composition of anise essential oil. In this study, we determined the effect of nine steam DTs (5, 15, 30, 60, 120, 180, 240, 360, and 480 minutes) on essential oil yield and essential oil composition of anise seed. We developed regression models to predict essential oil yield, the concentration of individual constituents, and the yield of these constituents as a function of DT. Highest essential oil yield (2.0 g/100 g seed, 2%) was obtained at 360-minute DT. The concentration of transanethole, the major anise oil constituent, varied from 93.5% to 96.2% (as a percent of the total oil) and generally was high at 15- to 60-minute DT and low at 240- to 480-minute DT. However, the yield of transanethole (calculated from the essential oil yield and the concentration of transanethole in the oil) increased with increasing DT to reach maximum at 360-minute DT. The concentration of the other oil constituents varied significantly depending on the DT, and some of them were higher at the shorter DT than at the longer DT. However, the yields of these constituents were highest at longer DT (either 360 or 480 minutes). DT can be used to obtain anise essential oil with different composition that would benefit the essential oil industry. This study demonstrated the need for providing DT in reports where anise seed essential oil yield and composition are discussed. This article can also be used as a reference point for comparing studies in which different DTs were used to extract essential oil from anise seed.


Sign in / Sign up

Export Citation Format

Share Document