scholarly journals A Specific Process to Purify 2-Methyl-D-Erythritol-4-Phosphate Enzymatically Converted from D-Glyceraldehyde-3-Phosphate and Pyruvate

2015 ◽  
Vol 10 (2) ◽  
pp. 1934578X1501000
Author(s):  
Shao-Qing Yang ◽  
Jian Deng ◽  
Qian-Qian Wu ◽  
Heng Li ◽  
Wen-Yun Gao

A one-pot enzymatic cascade was established to synthesize MEP, one of the key intermediates in the MEP terpenoid biosynthetic pathway. D-GAP and sodium pyruvate were converted to MEP in a reaction catalyzed by DXP synthase and DXP reductoisomerase (DXR) in the presence of the coenzymes ThPP, NADPH, and Mg2+. The product was then isolated by using a specific two-step purification process and MEP was obtained in a yield of nearly 60% and high purity. Importantly, MEP prepared by this way was totally free from contamination by minor amounts of DXP that was not completely convertible by DXR.

RSC Advances ◽  
2018 ◽  
Vol 8 (48) ◽  
pp. 27131-27143 ◽  
Author(s):  
Hajar Hosseini ◽  
Mohammad Bayat

Synthesis of N-amino-3-cyano-2-pyridone derivatives in green solvent with simple procedure and high purity via a one-pot operation.


2017 ◽  
Vol 41 (11) ◽  
pp. 657-660 ◽  
Author(s):  
Mohammad Reza Salari ◽  
Mohammad H. Mosslemin ◽  
Alireza Hassanabadi

A one-pot, efficient synthesis of 11 novel 2,3-diacylated trans-tetrahydrobenzofuran-4-one derivatives has been achieved via a three-component condensation of a N-(4-halophenacyl)-pyridinium bromide, a cyclic 1,3-diketone such as 5,5-dimethyl-1,3-cyclohexanedione (dimedone) or cyclohexane-1,3-dione and an arylglyoxal in the presence of catalytic amounts of 1,4-diaza-bicyclo[2.2.2]octane (DABCO) in water under reflux conditions. The attractive features of the method are excellent yields and high purity, short reaction times, easy work-up, and use of an inexpensive and non-toxic catalyst.


2002 ◽  
Vol 17 (3) ◽  
pp. 192-192 ◽  
Author(s):  
Y. Waseda ◽  
M. Isshiki ◽  
Steve Johnston

2019 ◽  
Vol 9 ◽  
pp. 184798041988617 ◽  
Author(s):  
Richard Crane ◽  
Devin Sapsford

The influence of different parameters (solid–liquid ratio, initial pH, initial Cu concentration and anion type) on the cementation of aqueous copper (Cu) with nanoscale zerovalent iron (nZVI) has been studied. The work has been established to study both the influence such parameters have on the kinetics and efficacy of the cementation process but also the physicochemical composition of resultant Cu-bearing products. The nZVI exhibited high Cu removal capacity (maximum removal 905.2 mg/g) due to its high surface area. X-ray diffraction determined the most common Cu-bearing precipitates were Cu2O, CuCl2 and Cu2(OH)3Cl for solutions containing Cl− counterions (CuCl2 salt precursor), while Cu0 and Cu2O were the most common phases for those containing [Formula: see text] counterions (CuSO4 salt precursor). Transmission electron microscopy determined such precipitates were discrete nanoparticles of relatively high purity Cu (e.g. >80 wt% Cu or ≥99.9 wt% Cu and O). Overall the results demonstrate nZVI as effective for the one-pot transformation of aqueous Cu into a range of different high purity Cu-bearing nanoparticles. The methodology developed herein is therefore likely to have important application in the recovery of Cu from wastewater and process solutions where the direct upcycling to high-value Cu-bearing nanoparticles is an advantageous form in which to recover Cu.


2015 ◽  
Vol 1101 ◽  
pp. 249-251 ◽  
Author(s):  
Bao Kun Tang ◽  
Yu Jin Lee ◽  
Kyung Ho Row

Biodiesel purification from the crude biodiesel product has attracted much attention in recent years, and one low cost and simple purification process is urgent to explore. The separation of methyl palmitate from the crude biodiesel products is a key point. In this work, a series of choline chloride based deep eutectic solvents (DESs) is explored as a solvent for separation of methyl palmitate from the simulated biodiesel product. The work showed that the choline chloride-ethylene glycol DES had a excellent effect on the separation of methyl palmitate, and high purity of methyl palmitate were obtained with the choline chloride to ethlene glycol ratio decrease or with the choline chloride-ethylene glycol DES to biodiesel ratio increase.


2015 ◽  
Vol 69 (11) ◽  
Author(s):  
Masoud Nasr-Esfahani ◽  
Morteza Montazerozohori ◽  
Tooba Abdizadeh

AbstractNanorod vanadatesulfuric acid (VSA NRs), as a recyclable and eco-benign catalyst, was used for one-pot synthesis of 2,4,5-trisubstituted imidazoles and 1,2,4,5-tetrasubstituted imidazoles using aldehydes, benzil, benzoin or 9,10-phenanthrenequinone and ammonium acetate or aniline under solvent-free conditions providing high to excellent yields. VSA is easily prepared by a simple reaction of chlorosulfonic acid and sodium metavanadate in high purity. As compared with the conventional procedures, the present protocol offers several advantages such as simplicity of procedure, short reaction time, high yields, easy workup, recoverability and reusability of the catalyst and simple purification of the products.


SynOpen ◽  
2020 ◽  
Vol 04 (03) ◽  
pp. 62-65
Author(s):  
Chada Raji Reddy ◽  
Sudam N. Sinare

AbstractA new scalable route to synthesize the factor Xa (FXa) inhibitor betrixaban is disclosed. The product is obtained in a seven-step reaction sequence (in five stages using two one-pot reactions) starting from easily accessible 4-(N,N-dimethylcarbamimidoyl)benzoate. Effective isolation of intermediates, use of cost-effective amide formation and 2-methyltetrahydrofuran as an effective reaction solvent as well as for extraction in three of the stages, are key features. The strategy provides the desired product in 38% overall yield with high purity (>98%).


Sign in / Sign up

Export Citation Format

Share Document