Elionurus tristis Essential Oil: GC-MS Analysis and Antioxidant and Antituberculosis Activities

2017 ◽  
Vol 12 (4) ◽  
pp. 1934578X1701200
Author(s):  
Brice Hervé Yedomon ◽  
Isabelle Saves ◽  
Narjes Mtimet ◽  
Emmanuel Guy Raoelison ◽  
Patricia Constant ◽  
...  

Essential oil was obtained in a yield 1.1%, w/w, by steam distillation of Elionurus tristis leaves from Madagascar. The chemical composition was analyzed qualitatively and quantitatively by GC-MS and GC-FID, respectively. To the best of our knowledge, this is the first chemical analysis of this essential oil. Seventy-three compounds were identified, corresponding to 94.9% of the total essential oil. The principal compounds were sesquiterpenes and the more represented were β-gurjunene (18.4%), neoclovene (15.8%) and nootkatone (10.4%). Through a comparative study, we observed a large variability between the components of E. tristis essential oil and those from others species of the same genus. Evaluation of the antioxidant (ABTS and DPPH assays) and anti-tuberculosis activities of the essential oil showed weak antioxidant potency but an interesting anti-tuberculosis activity with a MIC of 32 mg/L. This activity prompted us to evaluate individually the major components for the treatment of tuberculosis.

BioResources ◽  
2007 ◽  
Vol 2 (2) ◽  
pp. 265-269 ◽  
Author(s):  
M. Hakki Alma ◽  
Murat Ertaş ◽  
Siegfrie Nitz ◽  
Hubert Kollmannsberger

In this study, clove bud oil, which was cultivated in the Mediterranean region of Turkey, was provided from a private essential oil company in Turkey. Essential oil from clove (Syzygium aromaticum L.) was obtained from steam-distillation method, and its chemical composition was analyzed by GC and GC-MS. The results showed that the essential oils mainly contained about 87.00% eugenol, 8.01% eugenyl acetate and 3.56% β-Caryophyllene. The chemical composition of the Turkish clove bud oil was comparable to those of trees naturally grown in their native regions.


Author(s):  
Rini Yanti ◽  
Hermina Nurdiawati ◽  
Puji Wulandari ◽  
Yudi Pranoto ◽  
Muhammad Nur Cahyanto

Turmeric rhizomes are commonly used in the culinary, pharmaceutical, herbal medicine, and beverage industries. On the contrary, turmeric leaves are underutilized.  The aims of this study were to extract the essential oil from turmeric leaves, characterize the chemical composition of the oil, and determine its antifungal activities against aflatoxin-producing fungi. Steam distillation was used to extract the essential oil from turmeric leaves. The properties of the oil were identified using GC-MS. Antimicrobial activities against Aspergillus flavus and Aspergillus parasiticus were determined. Spores of the fungi were inoculated into potato dextrose agar plates supplemented with various quantities of turmeric leaves essential oil and incubated at 30°C for 7 days. The oil's primary constituents were α-phelandrene(46.70 %), followed by α-terpinolene (17.39 %), 1,8-cineole (8.78 %), benzene (4.24 %), and 2-β pinene (3.64 %). At low (<1%) concentrations, the oil delayed mycelia formation and at high concentrations it significantly inhibit fungal growth (at 1%) and completely inhibit colony formation (at 2%) Additionally, the result show that turmeric leaves oil can inhibited fungus growth at the lowest concentration (0.25 %) when compared to the control over a seven-day incubation period.


Author(s):  
Carla Maria Mariano Fernandez ◽  
◽  
Fabiana Brusco Lorenzetti ◽  
Sirlene Adriana Kleinubing ◽  
Joao Paulo Pinguello de Andrade ◽  
...  

The present study aimed to analyze the chemical composition of the essential oil from Garcinia gardneriana (Planchon & Triana) Zappi leaves and fruits, and to determine its acaricidal activity on Rhipicephalus microplus by larval packet test and larvicidal action on Aedes aegypti by larval immersion test. The chemical analysis of the essential oil by gas chromatography-mass spectrometry identified sesquiterpene hydrocarbons and oxygenated sesquiterpenes in bacupari leaves and fruits, and α-cedrene, α-chamigrene, α-trans-bergamotene, and β-curcumene as major compounds. Essential oil from leaves of G. gardneriana presented acaricidal activity on R. microplus (LC50 = 4.8 mg/mL; LC99 = 10.8 mg/mL) and larvicidal effect on A. aegypti (LC50 = 5.4 mg/mL; LC99 = 11.6 mg/mL), whereas essential oil from the fruits of G. gardneriana showed LC50 = 4.6 mg/mL and LC99 = 8.9 mg/mL against R. microplus and LC50 = 6.4 mg/mL and LC99 = 13.9 mg/mL against A. aegypti. These results thus demonstrate the potential acaricidal and larvicidal activity of essential oil of G. gardneriana, offering new perspectives for the realization of bioassays from this essential oil.


2014 ◽  
Vol 60 (2) ◽  
pp. 7-17 ◽  
Author(s):  
Aneta Wesołowska ◽  
Monika Grzeszczuk ◽  
Dorota Jadczak

Abstract The aim of the studies conducted in 2012-2013 was to compare the chemical composition of essential oils isolated from wild thyme (Thymus serpyllum L.) by hydrodistillation in Deryng and Clevenger apparatus. GC-MS analysis of the isolated oils revealed that carvacrol (42.81-45.24%), γ-terpinene (7.68-9.04%), β-caryophyllene (5.28-9.10%), β-bisabolene (5.76-6.91%) and carvacrol methyl ether (4.92-6.09%) were the major components of all the samples. On the basis of the obtained data it was proved that the type of distillation apparatus had no significant effect on the content of the main essential oil constituents of wild thyme. However, based on the means for both years of the study it was proved that hydrodistillation in Deryng apparatus was more effective for carvacrol concentration, while in Clevenger apparatus - for y-terpinene and carvacrol methyl ether concentration. The type of distillation apparatus had no significant effect on the content of the other essential oil constituents.


2006 ◽  
Vol 1 (8) ◽  
pp. 1934578X0600100
Author(s):  
Hesham R. El-Seedi

The essential oil obtained by steam distillation from the leaves and twigs of Eupatorium glutinosum Lam. (Asteraceae) showed antimicrobial activities against a Gram-positive bacterium, three Gram–negative bacteria and three fungi. The results from this study support the vernacular medicinal uses of the plant in folkloric medicine. The chemical composition of the essential oil was analysed by GC and GC-MS, resulting in the identification of 24 constituents accounting for 92.6% of the total mass. The major active component, carvacrol, was isolated using MPLC and characterized by NMR and MS analysis. β-Glucosidase-treatment of the aqueous plant residue yielded a volatile fraction that did not show antimicrobial activitiy, in which the major components were octen-3-ol and (Z)-hex-2-en-1-ol. The essential oil from the species is reported for the first time.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 783
Author(s):  
Oberdan Oliveira Ferreira ◽  
Jorddy Neves da Cruz ◽  
Celeste de Jesus Pereira Franco ◽  
Sebastião Gomes Silva ◽  
Wanessa Almeida da Costa ◽  
...  

The essential oil (EO) of plants of the Myrtaceae family has diverse chemical composition and several applications. However, data on the oil yield, its composition, and its complete chemistry are still unavailable for some species belonging to this family, such as Myrcia eximia DC. In this study, the chemical compositions of the EOs of Myrcia eximia were evaluated by using gas chromatography (GC) alone and gas chromatography coupled with mass spectrometry (GC–MS). Samples for both evaluations were collected from the city of Magalhães Barata, State of Pará, Brazil, in 2017 and 2018. For the plant material collected in 2017, EO was obtained by hydrodistillation (HD) only, while, for the material collected in 2018, EO was obtained by hydrodistillation and steam distillation (SD), in order to evaluate the differences in chemical composition and mass yield of the EO. The yields of (E)-caryophyllene were 15.71% and 20.0% for the samples collected by HD in 2017 and 2018, respectively, while the yield was 15.0% for the sample collected by SD in 2018. Hexanal was found to be the major constituent in the EO obtained by HD, with yield of up to 26.09%. The oil yields reached 0.08% by using SD, and 0.01% and 0.36% for the samples collected in 2017 and 2018, respectively, using HD. The results of this study provide new information about the mass yield and chemical composition of Myrcia eximia DC, and they can add value and income to traditional populations, as well as facilitate the preservation of this species.


2019 ◽  
Vol 14 (7) ◽  
pp. 1934578X1985749
Author(s):  
Jorge A. Pino ◽  
María Milagros Dueñas-Mendoza ◽  
Leoncio Solís-Quispe

The chemical composition of the essential oil from aerial parts of Minthostachys acris Schmidt-Leb. grown in Cuzco was studied. A total of 59 volatile compounds were identified by gas-chromatography-flame ionization detector and gas chromatography-mass spectrometry in the essential oil obtained by steam distillation, of which the most prominent were pulegone (54.4%), cis-menthone (11.0%), and thymol (6.3%).


2008 ◽  
Vol 3 (6) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Teresa Díaz ◽  
Flor D. Mora ◽  
Judith Velasco ◽  
Tulia Díaz ◽  
Luis B. Rojas ◽  
...  

The chemical constituents of the essential oil obtained by hydrodistillation from the leaves of Calycolpus moritzianus (O. Berg) Burret, syn Psidium caudatum Mc Vaught, collected in November 2006 in Mérida State, Venezuela, were identified by GC-MS analysis. Thirty components (91.1% of the sample) were identified, of which the seven major ones were β-caryophyllene (21.9%), α-pinene (10.9%), viridiflorol (9.7%), β-selinene (6.1%), α-copaene (6.3%), α-selinene (5.3%) and γ-eudesmol (5.1%). The oil was found to have antibacterial activity against Staphylococcus aureus ATCC (6538) and Enterococcus faecalis ATCC (29212), with MIC values of 60 μg/mL and 180 μg/mL, respectively.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Tao Feng ◽  
Jian-jie Cui ◽  
Zuo-bing Xiao ◽  
Huai-xiang Tian ◽  
Feng-ping Yi ◽  
...  

The composition of the peel essential oil of Torreya grandis fort obtained by cold pressing and steam distillation was determined by GC and GC/MS. 62 constituents accounting for 99.6% of the total pressed oil were identified while 59 compounds accounting for 99.4% of the steam distilled oil were identified. Limonene (35.6–37.1%), α-pinene (20.1–24.1%), and δ-carene (3.3–3.9) were the major constituents. Others include γ-carene (3.8-3.9%), germacrene D (2.5–2.9%), and β-farnesene (2.7-2.8%).


Sign in / Sign up

Export Citation Format

Share Document