scholarly journals Synthesis and Biological Evaluation of Imines Structurally Related to Resveratrol as Dual Inhibitors of VEGF Protein Secretion and hTERT Gene Expression1

2017 ◽  
Vol 12 (5) ◽  
pp. 1934578X1701200
Author(s):  
Rosa Martí-Centelles ◽  
Juan Murga ◽  
Eva Falomir ◽  
Miguel Carda ◽  
J. Alberto Marco

A group of 28 N-benzylidene aniline derivatives structurally related to the natural stilbene resveratrol has been prepared through condensation of anilines with the corresponding aldehydes. The ability of these imines to inhibit proliferation of two tumor cell lines (HT-29 and MCF-7) and one non-tumor cell line (HEK-293) was first determined. Subsequently, we determined the ability of some of the most cytotoxic compounds to inhibit the secretion of the VEGF-A factor in HT-29 cells and to downregulate the expression of the VEGF and hTERT genes, the latter one being involved in the activation of telomerase.

2019 ◽  
Vol 15 (4) ◽  
pp. 360-372 ◽  
Author(s):  
Dolores Santa María ◽  
Rosa M. Claramunt ◽  
José Elguero ◽  
Miguel Carda ◽  
Eva Falomir ◽  
...  

Background: A set of 2,5-diaryl-1,2,4-triazol-3-ones was synthesized in two steps and evaluated as regards their activity in some relevant biological targets related to cancer. Objective: This study is focused on the synthesis and the biological evaluation of 2,5-diaryl-1,2,4- triazol-3-ones. In this sense, the effect of the synthetic triazolones on the proliferation of HT-29 and A549 cancer cells and on HEK non-cancer cells has been measured. In addition, the effects of triazolones on the expression of hTERT, c-Myc and PD-L1 genes and on the production of c-Myc and PD-L1 proteins have also been evaluated. Method: A set of 2,5-diaryl-1,2,4-triazol-3-ones was synthesized in two steps. Firstly, N- (aminocarbonyl)-3-methoxybenzamide was prepared by coupling 3-methoxybenzoic acid and cyanamide followed by aqueous HCl hydrolysis. Then, the 2,5-diaryl-1,2,4-triazol-3-ones were obtained upon reaction of N-(aminocarbonyl)-3-methoxybenzamide with arylhydrazines in decaline at 170ºC. The ability of the triazolones to inhibit cell proliferation was measured against two human carcinoma cell lines (colorectal HT-29 and lung A549), and one non-tumor cell line (HEK- 293) by MTT assay. The downregulation of the synthetic triazolones on the expression of the hTERT, c-Myc and PD-L1 genes was measured by an RT-qPCR analysis. Their ability to regulate the expression of the c-Myc and PD-L1 proteins, as well as their direct interaction with c-Myc protein, was determined by the ELISA method. Finally, the direct interaction of triazolones with PD-L1 protein was assessed by the thermal shift assay. Results: Ten 2,5-diaryl-1,2,4-triazol-3-ones were synthesized and characterized by spectroscopic methods. A thorough study by 1H, 13C, 15N and 19F NMR spectroscopy showed that all the synthetic compounds exist as 4H-triazolones and not as hydroxytriazoles or 1H-triazolones. Some triazolones showed relatively high activities together with very poor toxicity in non-tumor cell line HEK-293. 2-(2-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (4) was particularly active in downregulating c-Myc and PD-L1 gene expression although 2-(4- chloro-2-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (8) is the one that combines the best downregulatory activities in the three genes studied. Considering protein expression, the most active compounds are 2-(4-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro- 3H-1,2,4-triazol-3-one (5) and 2-(2,4,6-trifluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H- 1,2,4-triazol-3-one (10) (c-Myc expression) and 2-(2,3,5,6-tetrafluorophenyl)-5-(3-methoxyphenyl)- 2,4-dihydro-3H-1,2,4-triazol-3-one (11) and (8) (PD-L1 expression). Conclusion: Some of the triazolones studied have shown relevant activities in the inhibition of the hTERT, c-Myc and PD-L1 genes, and in the inhibition of c-Myc and PD-L1 protein secretion, the 2-(4-chloro-2-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (8) was found to be a particularly promising lead compound.


2018 ◽  
Vol 18 (6) ◽  
pp. 891-902 ◽  
Author(s):  
Srinu Bodige ◽  
Parameshwar Ravula ◽  
Kali Charan Gulipalli ◽  
Srinivas Endoori ◽  
J.N. Narendra Sharath Chandra ◽  
...  

Background: Phosphatidylinositol-3-kinase α (PI3Kα) is a ubiquitous intracellular enzyme, mainly involved in intracellular signaling pathways, promotes cellular growth, proliferation, and differentiation. Therefore, inhibition of PI3K can be a hotspot in molecular targeted therapy for the treatment of cancer. Methods: The present research work involves molecular docking studies performed to screen derivatives of urea and thiourea bearing thieno [3,2-d]-pyrimidines against the active site of PI3K enzyme using MOE.2008.10. The designed structures (6a-f) and (7a-j) were synthesized by the facile synthetic methods and evaluated for their anticancer activity against HT-29 and MCF-7 cell lines and inhibitory activity against PI3Kα enzyme. Results: Among the tested compounds, 4-(4-(2-(3-(pyrimidin-2-yl)thioureido)ethyl)piperazin-1-yl)thieno[3,2- d]pyrimidine-6-carboxamide (7f) showed the highest anticancer activity against HT-29 and MCF-7 cell lines with IC50 values of 2.18 µM and 4.25 µM, respectively. Further, the same compound also exhibited potent PI3Kα inhibitory activity with IC50 value of 1.26 µM. Conclusion: Docking studies supported the initial pharmacophoric hypothesis and suggested a mode of interaction at the active binding site of PI3Kα, demonstrating that the target compounds were potential inhibitory agents for cancer therapy.


Author(s):  
M. Sathish Kumar ◽  
M. Vijey Aanandhi

The fused pyrimidine derivatives are potent tyrosine kinase and thymidylate synthase inhibitors. The compound 3-(4-sulphonyl amino)-2-methyl thio-6-phenyl azo-5, 7-dimethyl pyrido(2,3-d)pyrimidin-4-one was synthesized from Ethyl 2-amino-4,6-dimethylpyridine-3-carboxylate, benzene diazonium chloride, benzene sulphonyl amino isothiocyanate in subsequent reactions. 1-(1, 3-benzothiazol-2-yl)-3-methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidines were synthesized from 1, 3-benzothiazole, 2-thiol, Hydrazine Hydrate, 2-hydrazinyl-1, 3-benzothiazole and aldehydes in subsequent reactions. Twenty-five derivatives pyrimidine scaffolds were designed and performed molecular docking studies for the ability to inhibit the target protein using molecular docking simulation, selective compounds were synthesized and characterized by spectral methods. All the synthesized compounds evaluated for their antioxidant activity and MTT assay exhibited compounds 13c, 13e and 14d can be potential anticancer candidates against MCF-7, Hep G2 and Hela cell lines respectively. Based on all the studies conclude that good agreement was observed between the top-ranked docking scores and top experimental inhibitors when compared with standards ascorbic acid and imatinib. Hence, the compounds could be considered as new anticancer hits for further lead optimization.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1553
Author(s):  
Bingbing Zhao ◽  
Fei Lei ◽  
Caolin Wang ◽  
Binliang Zhang ◽  
Zunhua Yang ◽  
...  

2015 ◽  
Vol 11 ◽  
pp. 2509-2520 ◽  
Author(s):  
Hang Ren ◽  
Haoyun An ◽  
Paul J Hatala ◽  
William C Stevens ◽  
Jingchao Tao ◽  
...  

A unified synthetic strategy accessing novel 3'-fluorinated purine nucleoside derivatives and their biological evaluation were achieved. Novel 3’-fluorinated analogues were constructed from a common 3’-deoxy-3’-fluororibofuranose intermediate. Employing Suzuki and Stille cross-coupling reactions, fifteen 3’-fluororibose purine nucleosides 1–15 and eight 3’-fluororibose 2-chloro/2-aminopurine nucleosides 16–23 with various substituents at position 6 of the purine ring were efficiently synthesized. Furthermore, 3’-fluorine analogs of natural products nebularine and 6-methylpurine riboside were constructed via our convergent synthetic strategy. Synthesized nucleosides were tested against HT116 (colon cancer) and 143B (osteosarcoma cancer) tumor cell lines. We have demonstrated 3’-fluorine purine nucleoside analogues display potent tumor cell growth inhibition activity at sub- or low micromolar concentration.


2019 ◽  
Vol 74 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Ana Clara Sabbione ◽  
Fredrick Onyango Ogutu ◽  
Adriana Scilingo ◽  
Miao Zhang ◽  
María Cristina Añón ◽  
...  

1985 ◽  
Vol 122 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Alain Zweibaum ◽  
Mo�se Pinto ◽  
Guillemette Chevalier ◽  
Elisabeth Dussaulx ◽  
Nicole Triadou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document