scholarly journals Melanogenesis Inhibitory Activity of Diterpenoid and Triterpenoid Constituents from the Aerial Part of Isodon trichocarpus

2017 ◽  
Vol 12 (8) ◽  
pp. 1934578X1701200
Author(s):  
Yoshiaki Manse ◽  
Kiyofumi Ninomiya ◽  
Akane Okazaki ◽  
Eriko Okada-Nishida ◽  
Takahiro Imagawa ◽  
...  

A methanol extract from the aerial part of Isodon trichocarpus (Labiatae) demonstrated inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells (IC50 = 1.6 μg/mL). From the extract, nine diterpenoids (1–9) and four triterpenoids (10–13) were isolated. Among the isolates, enmein (1, IC50 = 0.22 μM), isodocarpin (2, 0.19 μM), nodosin (4, 0.46 μM), and oridonin (6, 0.90 μM) showed an inhibitory effect without notable cytotoxicity at the effective concentrations. These diterpenoids (1, 2, 4, and 6) inhibited the expression of tyrosinase, tyrosine-related protein (TRP)-1, and TRP-2 mRNA, which could be the mechanism of melanogenesis inhibitory activity.

1995 ◽  
Vol 22 (1) ◽  
pp. 7 ◽  
Author(s):  
JA Campbell ◽  
BR Loveys ◽  
VWK Lee ◽  
S Strother

An inhibitory effect on the growth of Lemna minor L. cultures has been demonstrated in xylem exudate from Vitis vinifera L. var. Waltham Cross bled from canes cut near the time of budburst. Most inhibitory activity was detected up to the time of maximal daily exudation, which corresponded closely with budburst. After this time the inhibitory activity rapidly disappeared. A similar pattern occurred in each of the 3 years of the study, 1988-1990. Using ultrafiltration, it was shown that most of the growth inhibitor activity of the crude exudate was located in the 0.5-10 kDa fraction. This fraction exhibited a seasonal variation in its bioactivity similar to that ofthe crude exudate samples. The 0.5-10 kDa fraction was found to contain abscisic acid but not in a sufficient quantity to account for the inhibitory effects. When chromatographically separated fractions corresponding to oligosaccharides were pooled, biological activity equivalent to that of the crude exudate was retained, which provides evidence that the inhibitor is possibly an oligosaccharide.


2018 ◽  
Vol 55 (No. 1) ◽  
pp. 23-30
Author(s):  
Aoki Yoshinao ◽  
Trung Nguyen Van ◽  
Suzuki Shunji

Methanol extract of Piper betle leaves exhibited an inhibitory effect on grape downy mildew. This extract might contain more than two compounds which have different polarities that suppress grape downy mildew. Gas chromatograph-tandem mass spectrometry analysis identified 4-allylpyrocatechol, eugenol, α-pinene, and β-pinene in the methanol extract. Neither of the compounds suppressed grape downy mildew by single treatment. On the other hand, treatment with a combination of 4-allylpyrocatechol with eugenol, α-pinene or β-pinene enhanced the inhibitory effects on grape downy mildew and perfectly suppressed it. The complex extracted from P. betle leaves may be used in organic agriculture as an alternative to chemical fungicides in viticulture.


1988 ◽  
Vol 254 (1) ◽  
pp. 297-300 ◽  
Author(s):  
A Sano ◽  
N S Radin

During the isolation of the activator protein for glucosylceramide beta-glucosidase, we found that certain column fractions contained an inhibitor of the enzyme. After separation from the activator protein by a DEAE-Sephacel column, the inhibitor was purified further with a Spehadex G-75 column. The u.v. absorption spectrum of the purified material was similar to that of nucleic acids and the protein content of the purified material was negligible. Furthermore the purified inhibitor reacted with orcinol but not with diphenylamine, and its inhibitory activity was completely destroyed by treatment with RNAases. It seems likely that the purified inhibitor was tRNA. Authentic RNA, tRNA and DNA had similar inhibitory effects on beta-glucosidase (Ki 17 micrograms/ml for tRNA, noncompetitive toward the substrate). The inhibitory effect of nucleic acids was not fully overcome by an excess amount of the activator protein, but phosphatidylserine could restore the activity to normal. Tests with several other hydrolases revealed that the inhibitory effect of nucleic acids was fairly general.


2003 ◽  
Vol 66 (10) ◽  
pp. 1783-1789 ◽  
Author(s):  
J. S. BOLAND ◽  
P. M. DAVIDSON ◽  
J. WEISS

This study examined the effects of three chelating agents (EDTA, disodium pyrophosphate [DSPP], and pentasodium tripolyphosphate [PSTPP]) on the inhibition of the growth of Escherichia coli O157:H7 by lysozyme. The objective of this study was to identify replacement chelators that exhibit synergistic properties similar to those of EDTA. The inhibitory effects of EDTA at 300 to 1,500 μg/ml and of DSPP and PSTPP at 3,000 to 15,000 μg/ml in combination with lysozyme at 200 to 600 μg/ml for up to 48 h at pHs of 6.0, 7.0, and 8.0 on four strains of E. coli O157:H7 was studied with the use of a microbroth dilution assay. The addition of EDTA enhanced lysozyme's inhibitory effect on strains of E. coli O157:H7. EDTA at ≥300 μg/ml combined with lysozyme at 200 to 600 μg/ml was sufficient to inhibit the growth of the strains at pHs of 6.0 and 8.0. At pH 7.0, lysozyme at 200 to 600 μg/ml and EDTA concentrations of ≥1,000 μg/ml were effective in inhibiting three of the four strains. DSPP at pH 6.0 was inhibitory at ≥10,000 μg/ml when combined with lysozyme at 200 to 300 μg/ml. In contrast, PSTPP increased the inhibitory activity of lysozyme more effectively at pH 8.0. Lysozyme at 200 to 600 μg/ml was effective against two strains of E. coli O157:H7 when used in conjunction with PSTPP at ≥5,000 μg/ml. The remaining strains were inhibited by PSTPP at ≥10,000 μg/ml. Our results indicate that inhibition occurred with each lysozyme-chelator combination, but the concentrations of phosphates required to increase the antimicrobial spectrum of lysozyme against E. coli O157:H7 were higher than the EDTA concentrations required to achieve the same effect.


2019 ◽  
Vol 15 (1) ◽  
pp. 22-27
Author(s):  
Abir Bekhaoua ◽  
Ihcen Khacheba ◽  
Hadjer Boussoussa ◽  
Mohamed Yousfi

Background: The genus Linaria belongs to the Scrophulariaceae family. It is a large genus comprising about 200 species. Various parts of several Linaria species have been reported to exhibit various biological effects. In Algeria especially in the Sahara and steppe regions, the different species of Linaria have several uses in dietary application. Objective: The aims of this study are to evaluate the α-Glucosidase and α-Amylase inhibitory effects and the antioxidant activity using in vitro assays by an organic extract of the aerial part of Linaria aegyptiaca collected in two months, April and June, from southern Algeria. Methods: The extracts were obtained with successful maceration in (hexane, dichloromethane, acetone and methanol). The phenolics and flavonoids contents of L. aegyptiaca extracts were evaluated with Folin- Ciocalteu and aluminum chloride reagents, respectively. Then, we studied their inhibitory effects on α-Glucosidase and α-Amylase enzymes. The antioxidant potential was determined in vitro with DPPH, ABT and Phosphomolybdate tests. Results: The highest phenolic and flavonoid content were detected in the methanolic extracts of Linaria aegyptiaca collected in April. All the extracts showed good inhibitory activity on both enzymes, where the best activity was against α- amylase by acetonic extract collected in June with an IC50 = 95.03 μg/ml. The evaluation of antioxidant activity showed that all the extracts exhibited a good antioxidant capacity compared to standard antioxidants. Conclusion: The aim of this research is to establish the anti-diabetic properties and the probable alpha glucosidase and alpha amylase inhibitory activities of Algerian Linaria aegyptiaca species. These results show that this species has good antioxidant properties and a good potential for hyperglycemia management, too. The Algerian Linaria aegyptiaca can be considered as a natural source of anti-hyperglycemic treatment and might be interesting for the prospect of new molecules with antidiabetic effect.


1983 ◽  
Vol 158 (3) ◽  
pp. 885-900 ◽  
Author(s):  
G J Cianciolo ◽  
M E Lostrom ◽  
M Tam ◽  
R Snyderman

Murine tumors contain low molecular weight factors that inhibit macrophage accumulation at inflammatory foci. Certain oncogenic murine leukemia viruses contain similar inhibitory activity and the active component of the retroviruses was shown to be the envelope protein P15E. A number of murine malignant and nonmalignant cell lines, as well as primary tumors, have now been examined to determine whether production of retroviral P15E or a related protein is characteristic of neoplastic cells. Tumor lines examined included the Hep 129 hepatocarcinoma, BP8 fibrosarcoma, RL1 lymphoma, and three variants of the B16 melanoma. Tumor lines were virus negative by electron microscopy. Nonmalignant cells examined included ST0, 3T3/BALB, and 3T3/L1 fibroblasts and unstimulated, as well as mitogen-stimulated murine splenocytes. Cells were pulse-labeled with [35S]methionine, proteins immunoprecipitated with two monoclonal antibodies to P15E and analyzed by SDS-PAGE and gel fluorography. All tumor lines synthesized a approximately 19,000-dalton protein that co-migrated with retroviral P15E on SDS-PAGE. None of the nonmalignant cells synthesized this protein. Two-dimensional gel electrophoresis of the proteins precipitated from two B16 melanoma lines by monoclonal anti-P15E showed them to be physicochemically similar to P15E from Rauscher leukemia virus. A competition ELISA assay for P15E was developed and confirmed the results obtained by metabolic labeling and demonstrated P15E-related antigens in the tumor cell lines and also in the ascites fluid of mice injected with Hep 129 cells. More importantly, P15E antigens were expressed in both a spontaneous mammary adenocarcinoma and in a primary methylcholanthrene-induced fibrosarcoma. Nonmalignant tissues from animals bearing these tumors contained no detectable P15E antigen. Extracts from the primary fibrosarcomas, when injected into the thighs of mice, inhibited the intraperitoneal accumulation of inflammatory macrophages. The inhibitory activity was specifically removed by absorption with monoclonal antibody to P15E. These results suggest that synthesis of the immunosuppressive retroviral protein P15E, or a very similar protein, routinely occurs during the growth of murine neoplastic cells. This P15E-related protein is present in spontaneous murine primary tumors as well as in all murine tumor cell lines tested. The expression of such proteins by transformed cells in vivo could confer a selective advantage for their sustained growth since they would be more likely to escape immune surveillance.


2012 ◽  
Vol 4 (2) ◽  
pp. 156-163
Author(s):  
N. E. Okoronkwo ◽  
J. O. Echeme

The cholinesterase and microbial inhibitory activities of different parts of Tetrapleura tetraptera plant were evaluated due to their local applications. The cholinesterase results revealed that the extracts showed some levels of inhibitory effects depending on the solvents used. Tetrapleura tetraptera leaves had better inhibitory effects with maximum inhibitory activity of 70.0% at a concentration of 1.00mg/l for the water extract. Tetrapleura tetraptera bark showed highest inhibitory effect of 71.05% and (84.34%) for the ethanol and chloroform extracts at concentrations of 0.5mg/l and 1.0 mg/l respectively. While for petroleum ether, T. tetraptera bark recorded 74.34% inhibitory effect at concentration of 2.0 mg/l and also showed continuous increase in inhibitory activity as the concentration increases for aqueous methanol. The results of the antimicrobial activities showed that among all the test organisms, theethanol and water extracts of the leaves, stem, bark and root of the plants had promising activity against Escherichia coli, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa and Klebsiella pneumonia bacteria and Aspergillus fumigatus and Rhizopus species fungi. There was no activity shown by the ethanol and water extracts ofthe parts of the plants with Fugarium oxysporum, Penicillium chrysogenum and Mucor species fungi. The bacteria strains were more sensitive to the tested extracts than the fungi strains.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Hassan Javid ◽  
Soheila Moein ◽  
Mahmood Reza Moein

Background: Diabetes mellitus is believed to be the most serious metabolic disease. One of the treatments for diabetes is to delay glucose uptake by inhibiting carbohydrate-hydrolyzing enzymes. Alpha-glucosidase inhibitors delay glucose uptake. Objectives: The present study was conducted aiming to evaluate the efficacy of Salvia extracts in inhibiting diabetes marker enzymes and their effects on the treatment of diabetes. Methods: This experimental study was performed in vitro. The studied plants included Salvia macilenta and Salvia officinalis. The inhibitory effects of their dichloromethane and methanol extracts were also investigated. After calculating the percentage of inhibition and IC50, Km and Vmax using GraphPad Prism 7 were also calculated. The statistical analysis was performed employing GraphPad Instat 3 software. Results: The results herein showed that the greatest inhibitory effect on alpha-glucosidase belonged to the methanol extract of S. macilenta with IC50 = 8.73 ± 0.26 mg/mL compared to that of acarbose with IC50 = 8.82 ± 0.14 mg/mL as a standard. The IC50 of dichloromethane extract of S. officinalis was 8.95 ± 0.23 mg/mL. Conclusions: The extracts had significant inhibitory effects on alpha-glucosidase. However, methanol extract of S. macilenta and dichloromethane extract of S. officinalis demonstrated the greatest inhibitory effects on alpha-glucosidase compared to acarbose as a standard.


Author(s):  
Pınar Ercan ◽  
Sedef Nehir El

Abstract. The goals of this study were to determine and evaluate the bioaccessibility of total anthocyanin and procyanidin in apple (Amasya, Malus communis), red grape (Papazkarası, Vitis vinifera) and cinnamon (Cassia, Cinnamomum) using an in vitro static digestion system based on human gastrointestinal physiologically relevant conditions. Also, in vitro inhibitory effects of these foods on lipid (lipase) and carbohydrate digestive enzymes (α-amylase and α-glucosidase) were performed with before and after digested samples using acarbose and methylumbelliferyl oleate (4MUO) as the positive control. While the highest total anthocyanin content was found in red grape (164 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432 ± 177.31 mg/100 g) (p < 0.05). The anthocyanin bioaccessibilities were found as 10.2 ± 1%, 8.23 ± 0.64%, and 8.73 ± 0.70% in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57 ± 0.71%, 14.08 ± 0.74% and 18.75 ± 1.49%, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544 ± 21.94, 445 ± 15.67, 1592 ± 17.58 μg/mL, respectively), α-amylase (IC50 38.4 ± 7.26, 56.1 ± 3.60, 3.54 ± 0.86 μg/mL, respectively), and lipase (IC50 52.7 ± 2.05, 581 ± 54.14, 49.6 ± 2.72 μg/mL), respectively. According to our results apple, red grape and cinnamon have potential to inhibit of lipase, α-amylase and α-glucosidase digestive enzymes.


1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


Sign in / Sign up

Export Citation Format

Share Document