scholarly journals Alisol B 23-acetate attenuates CKD progression by regulating the renin–angiotensin system and gut–kidney axis

2020 ◽  
Vol 11 ◽  
pp. 204062232092002
Author(s):  
Hua Chen ◽  
Min-Chang Wang ◽  
Yuan-Yuan Chen ◽  
Lin Chen ◽  
Yan-Ni Wang ◽  
...  

Background: Increasing evidence suggests a link between the gut microbiome and various diseases including hypertension and chronic kidney disease (CKD). However, studies examining the efficacy of controlling blood pressure and inhibiting the renin–angiotensin system (RAS) in preventing CKD progression are limited. Methods: In the present study, we used 5/6 nephrectomised (NX) and unilateral ureteral obstructed (UUO) rat models and cultured renal tubular epithelial cells and fibroblasts to test whether alisol B 23-acetate (ABA) can attenuate renal fibrogenesis by regulating blood pressure and inhibiting RAS. Results: ABA treatment re-established dysbiosis of the gut microbiome, lowered blood pressure, reduced serum creatinine and proteinuria, suppressed expression of RAS constituents and inhibited the epithelial-to-mesenchymal transition in NX rats. Similarly, ABA treatment inhibited expression of collagen I, fibronectin, vimentin, α-smooth muscle actin and fibroblast-specific protein 1 at both mRNA and protein levels in UUO rats. ABA was also effective in suppressing activation of the transforming growth factor-β (TGF-β)/Smad3 and preserving Smad7 expression in both NX and UUO rats. In vitro experiments demonstrated that ABA treatment inhibited the Wnt/β-catenin and mitochondrial-associated caspase pathways. Conclusion: These data suggest that ABA attenuated renal fibrosis through a mechanism associated with re-establishing dysbiosis of the gut microbiome and regulating blood pressure, and Smad7-mediated inhibition of Smad3 phosphorylation. Thus, we demonstrate ABA as a promising candidate for treatment of CKD by improving the gut microbiome and regulating blood pressure.

1984 ◽  
Vol 246 (1) ◽  
pp. E84-E88
Author(s):  
C. D. Simon ◽  
T. W. Honeyman ◽  
J. C. Fray

The mechanisms whereby the pituitary gland maintains arterial pressure were investigated in rats. The arterial pressure in hypophysectomized rats was 30 mmHg below normal. Saralasin or captopril caused a further fall of 25 and 30 mmHg, respectively, suggesting that the renin-angiotensin system plays a role in blood pressure maintenance in hypophysectomized rats. Growth hormone administration to hypophysectomized rats increased the arterial pressure, but pretreatment with captopril prevented the effect. Plasma renin activity and basal renin secretion (in vitro) was normal in hypophysectomized rats despite a twofold greater renal renin content. Secretory responsiveness to isoproterenol and calcium omission was lower in hypophysectomized rats. It is concluded that the renin-angiotensin system plays a role in maintaining arterial blood pressure in hypophysectomized rats although the responsiveness of the system may be decreased.


2018 ◽  
Vol 19 (3) ◽  
pp. 147032031880300 ◽  
Author(s):  
Chung-Ming Chen ◽  
Shu-Hui Juan ◽  
Hsiu-Chu Chou

Introduction: The renin–angiotensin system and epithelial–mesenchymal transition play crucial roles in the development of kidney fibrosis. The connection between the renin–angiotensin system and transforming growth factor-β in epithelial–mesenchymal transition remains largely unknown. Materials and methods: We assessed oxidative stress, cytokine levels, renal morphology, profibrotic growth factor and renin–angiotensin system component expression, and cell-specific E- and N-cadherin expression in the kidneys of gerbils with streptozotocin-induced diabetes mellitus. Results: Animals in the experimental group received an intraperitoneal injection of streptozotocin to induce diabetes. The diabetic gerbil kidneys presented kidney injury, which was manifested as distorted glomeruli, necrosis of tubular cells, dilated tubular lumen, and brush border loss. Additionally, the diabetic gerbil kidneys exhibited significantly higher expressions of 8-hydroxy-2′-deoxyguanosine, nuclear factor-kB, toll-like receptor 4, tumor necrosis factor-α, transforming growth factor-β, connective tissue growth factor, α-smooth muscle actin, and N-cadherin and higher collagen deposition than did the control gerbil kidneys. Compared with the control kidneys, the diabetic gerbil kidneys exhibited significantly lower E-cadherin expression. These epithelial–mesenchymal transition characteristics were associated with an increase in renin–angiotensin system expression in the diabetic gerbils. Conclusions: We demonstrate that hyperglycemia activated the renin–angiotensin system, induced epithelial–mesenchymal transition, and contributed to kidney fibrosis in an experimental diabetes mellitus model.


2003 ◽  
Vol 98 (6) ◽  
pp. 1338-1344 ◽  
Author(s):  
Gilles Boccara ◽  
Alexandre Ouattara ◽  
Gilles Godet ◽  
Eric Dufresne ◽  
Michèle Bertrand ◽  
...  

Background Terlipressin, a precursor that is metabolized to lysine-vasopressin, has been proposed as a drug for treatment of intraoperative arterial hypotension refractory to ephedrine in patients who have received long-term treatment with renin-angiotensin system inhibitors. The authors compared the effectiveness of terlipressin and norepinephrine to correct hypotension in these patients. Methods Among 42 patients scheduled for elective carotid endarterectomy, 20 had arterial hypotension following general anesthesia that was refractory to ephedrine. These patients were the basis of the study. After randomization, they received either 1 mg intravenous terlipressin (n = 10) or norepinephrine infusion (n = 10). Beat-by-beat recordings of systolic arterial blood pressure and heart rate were stored on a computer. The intraoperative maximum and minimum values of blood pressure and heart rate, and the time spent with systolic arterial blood pressure below 90 mmHg and above 160 mmHg, were used as indices of hemodynamic stability. Data are expressed as median (95% confidence interval). Results Terlipressin and norepinephrine corrected arterial hypotension in all cases. However, time spent with systolic arterial blood pressure below 90 mmHg was less in the terlipressin group (0 s [0-120 s] vs. 510 s [120-1011 s]; P < 0.001). Nonresponse to treatment (defined as three boluses of terlipressin or three changes in norepinephrine infusion) occurred in zero and eight cases (P < 0.05), respectively. Conclusions In patients who received long-term treatment with renin-angiotensin system inhibitors, intraoperative refractory arterial hypotension was corrected with both terlipressin and norepinephrine. However, terlipressin was more rapidly effective for maintaining normal systolic arterial blood pressure during general anesthesia.


2017 ◽  
Vol 312 (5) ◽  
pp. H968-H979 ◽  
Author(s):  
Neeru M. Sharma ◽  
Shyam S. Nandi ◽  
Hong Zheng ◽  
Paras K. Mishra ◽  
Kaushik P. Patel

An activated renin-angiotensin system (RAS) within the central nervous system has been implicated in sympathoexcitation during various disease conditions including congestive heart failure (CHF). In particular, activation of the RAS in the paraventricular nucleus (PVN) of the hypothalamus has been recognized to augment sympathoexcitation in CHF. We observed a 2.6-fold increase in angiotensinogen (AGT) in the PVN of CHF. To elucidate the molecular mechanism for increased expression of AGT, we performed in silico analysis of the 3′-untranslated region (3′-UTR) of AGT and found a potential binding site for microRNA (miR)-133a. We hypothesized that decreased miR-133a might contribute to increased AGT in the PVN of CHF rats. Overexpression of miR-133a in NG108 cells resulted in 1.4- and 1.5-fold decreases in AGT and angiotensin type II (ANG II) type 1 receptor (AT1R) mRNA levels, respectively. A luciferase reporter assay performed on NG108 cells confirmed miR-133a binding to the 3′-UTR of AGT. Consistent with these in vitro data, we observed a 1.9-fold decrease in miR-133a expression with a concomitant increase in AGT and AT1R expression within the PVN of CHF rats. Furthermore, restoring the levels of miR-133a within the PVN of CHF rats with viral transduction resulted in a significant reduction of AGT (1.4-fold) and AT1R (1.5-fold) levels with a concomitant decrease in basal renal sympathetic nerve activity (RSNA). Restoration of miR-133a also abrogated the enhanced RSNA responses to microinjected ANG II within the PVN of CHF rats. These results reveal a novel and potentially unique role for miR-133a in the regulation of ANG II within the PVN of CHF rats, which may potentially contribute to the commonly observed sympathoexcitation in CHF. NEW & NOTEWORTHY Angiotensinogen (AGT) expression is upregulated in the paraventricular nucleus of the hypothalamus through posttranscriptional mechanism interceded by microRNA-133a in heart failure. Understanding the mechanism of increased expression of AGT in pathological conditions leading to increased sympathoexcitation may provide the basis for the possible development of new therapeutic agents with enhanced specificity.


2012 ◽  
Vol 302 (3) ◽  
pp. R313-R320 ◽  
Author(s):  
Curt D. Sigmund

The purpose of this review is two-fold. First, I will highlight recent advances in our understanding of the mechanisms regulating angiotensin II (ANG II) synthesis in the brain, focusing on evidence that renin is expressed in the brain and is expressed in two forms: a secreted form, which may catalyze extracellular ANG I generation from glial or neuronal angiotensinogen (AGT), and an intracellular form, which may generate intracellular ANG in neurons that may act as a neurotransmitter. Second, I will discuss recent studies that advance the concept that the renin-angiotensin system (RAS) in the brain not only is a potent regulator of blood pressure and fluid intake but may also regulate metabolism. The efferent pathways regulating the blood pressure/dipsogenic effects and the metabolic effects of elevated central RAS activity appear different, with the former being dependent upon the hypothalamic-pituitary-adrenal axis, and the latter being dependent upon an interaction between the brain and the systemic (or adipose) RAS.


Sign in / Sign up

Export Citation Format

Share Document