scholarly journals Big Data Dreams and Reality in Shenzhen: An Investigation of Smart City Implementation in China

2021 ◽  
Vol 8 (2) ◽  
pp. 205395172110451
Author(s):  
Jelena Große-Bley ◽  
Genia Kostka

Chinese cities are increasingly using digital technologies to address urban problems and govern society. However, little is known about how this digital transition has been implemented. This study explores the introduction of digital governance in Shenzhen, one of China's most advanced smart cities. We show that, at the local level, the successful implementation of digital systems faces numerous hurdles in long-standing data management and bureaucratic practices that are at least as challenging as the technical problems. Furthermore, the study finds that the digital systems in Shenzhen entail a creeping centralisation of data that potentially turns lower administrative government units into mere users of the city-level smart platforms rather than being in control of their own data resources. Smart city development and big data ambitions thereby imply shifting stakeholder relations at the local level and also pull non-governmental stakeholders, such as information technology companies and research institutions, closer to new data flows and smart governance systems. The findings add to the discussion of big data-driven smart systems and their implications for governance processes in an authoritarian context.

2021 ◽  
Vol 22 (2) ◽  
Author(s):  
Haixia Yu ◽  
Ion Cosmin Mihai ◽  
Anand Srivastava

With the development of smart meters, like Internet of Things (IoT), various kinds of electronic devices are equipped with each smart city. The several aspects of smart cities are accessible and these technologies enable us to be smarter. The utilization of the smart systems is very quick and valuable source to fulfill the requirement of city development. There are interconnection between various IoT devices and huge amount of data is generated when they communicate each other over the internet. It is very challenging task to effectively integrate the IoT services and processing big data. Therefore, a system for smart city development is proposed in this paper which is based on the IoT utilizing the analytics of big data. A complete system is proposed which includes various types of IoT-based smart systems like smart home, vehicular networking, and smart parking etc., for data generation. The Hadoop ecosystem is utilized for the implementation of the proposed system. The evaluation of the system is done in terms of throughput and processing time. The proposed technique is 20% to 65% better than the existing techniques in terms of time required for processing. In terms of obtained throughput, the proposed technique outperforms the existing technique by 20% to 60%.


Author(s):  
Suresh P. ◽  
Keerthika P. ◽  
Sathiyamoorthi V. ◽  
Logeswaran K. ◽  
Manjula Devi R. ◽  
...  

Cloud computing and big data analytics are the key parts of smart city development that can create reliable, secure, healthier, more informed communities while producing tremendous data to the public and private sectors. Since the various sectors of smart cities generate enormous amounts of streaming data from sensors and other devices, storing and analyzing this huge real-time data typically entail significant computing capacity. Most smart city solutions use a combination of core technologies such as computing, storage, databases, data warehouses, and advanced technologies such as analytics on big data, real-time streaming data, artificial intelligence, machine learning, and the internet of things (IoT). This chapter presents a theoretical and experimental perspective on the smart city services such as smart healthcare, water management, education, transportation and traffic management, and smart grid that are offered using big data management and cloud-based analytics services.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Ayodeji Emmanuel Oke ◽  
Douglas O. Aghimien ◽  
Clinton O. Aigbavboa ◽  
Opeoluwa I. Akinradewo

The quest for smart cities and development has been on the increase among infrastructural development stakeholders, including clients, government agencies responsible for the management of infrastructures, construction professionals, sponsors, and financiers of these projects. However, studies around the world have shown that less attention is being paid by these stakeholders to various indices and measures of smart cities. These measures and indices, known as drivers, are smart environment, smart economy, smart people, smart governance, smart mobility, and smart living. Using these drivers and their indicators, a multiple-choice questionnaire was designed in line with existing and relevant literature materials in the subject area. These questionnaires were administered on construction professionals with relevant and adequate knowledge of smart construction. Smart environment was found to be a major driver of a smart city while smart people, smart governance and smart living are also key to the achievement of the goals and objectives of the concept. The developed key smart city drivers are a workable, adaptable and efficient city design mechanism and it will be useful for city planners, statutory agencies as well other stakeholders in the development of smart cities.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2430 ◽  
Author(s):  
Alaa Alsaig ◽  
Vangalur Alagar ◽  
Zaki Chammaa ◽  
Nematollaah Shiri

Smart city is an emerging initiative for integrating Information and Communication Technologies (ICT) in effective ways to support development of smart cities with enhanced quality of life for its citizens through safe and secure context-aware services. Major technical challenges to realize smart cities include resource use optimization, service delivery without interruption at all times in all aspects, minimization of costs, and reduction of resource consumption. To address these challenges, new techniques and technologies are required for modeling and processing the big data generated and used through the underlying Internet of Things (IoT). To this end, we propose a data-centric approach to IoT in conceptualizing the “things” from a service-oriented perspective and investigate efficient ways to identify, integrate, and manage big data. The data-centric approach is expected to better support efficient management of data with complexities inherent in IoT-generated big data. Furthermore, it supports efficient and scalable query processing and reasoning techniques required in development of smart city applications. This article redresses the literature and contributes to the foundations of smart cities applications.


2021 ◽  
Vol 8 (1) ◽  
pp. 50-59
Author(s):  
Muhammad Iqbal

The main aspects of building a smart city according to Frost and Sullivan in 2014 are smart governance, smart technology, smart infrastructure, smart healthcare, smart mobility, smart building, smart energy and smart citizens. The smart city's purpose is to form a comfortable, safe city and strengthen its competitiveness. Based on these indicators, Taipei City can become one of the cities with the best Smart City implementation globally. This article uses a qualitative approach with literature review techniques in data collection. This study's findings indicate that the Smart Education, Smart Transportation, Smart Social Housing and Smart Healthcare policies are essential policies in supporting the successful implementation of smart cities in Taipei City. The four main pillars in implementing smart city in Taipei City have integrated Artificial intelligence and big data in smart city governance in Taipei City.


Author(s):  
Andrew Omambia

The concept of smart city is a burgeoning strategy that is fast becoming popular as a strategy that will be able to mitigate the problems emanating from the uncontrolled population growth and urbanization. Academicians have turned their attention to the smart city concept, but an in-depth understanding of the concept is still required. There is a dearth of information on the concept and hence the phenomenon is not well understood. This study, therefore, aims to fill the gap in literature regarding smart cities and propose a framework for grasping the concept further. Based on exploratory studies on the concept of smart cities, this chapter focusses on nine key factors that will form the framework for smart cities and the smart cities initiatives. These nine critical factors include the management, organization governance, technology, people, policy, economy, natural environment, built environment, and the implications of big data on smart cities. These factors provide the basis for the development of an integrative framework that can be employed to examine the manner in which governments around the world, including Kenya, are envisioning smart city initiatives. The framework provides the agendas and directions for smart approaches that can be implemented in cities and a road map for the attainment of smart cities.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Ana Paula P. Kasznar ◽  
Ahmed W. A. Hammad ◽  
Mohammad Najjar ◽  
Eduardo Linhares Qualharini ◽  
Karoline Figueiredo ◽  
...  

In recent years, there has been significant focus on smart cities, on how they operate and develop, and on their technical and social challenges. The importance of infrastructure as a major pillar of support in cities, in addition to the rapid developments in smart city research, necessitate an up-to-date review of smart cities’ infrastructure issues and challenges. Traditionally, a majority of studies have focused on traffic control and management, transport network design, smart grid initiatives, IoT (Internet of Things) integration, big data, land use development, and how urbanization processes impact land use in the long run. The work presented herein proposes a novel review framework that analyzes how smart city infrastructure is related to the urbanization process while presenting developments in IoT sensor networks, big data analysis of the generated information, and green construction. A classification framework was proposed to give insights on new initiatives regarding smart city infrastructure through answering the following questions: (i) What are the various dimensions on which smart city infrastructure research focuses? (ii) What are the themes and classes associated with these dimensions? (iii) What are the main shortcomings in current approaches, and what would be a good research agenda for the future? A bibliometric analysis was conducted, presenting cluster maps that can be used to understand different research trends and refine further searches. A bibliographic analysis was then followed, presenting a review of the most relevant studies over the last five years. The method proposed serves to stress where future research into understanding smart systems, their implementation and functionality would be best directed. This research concluded that future research on the topic should conceptualize smart cities as an emergent socio-techno phenomenon.


2020 ◽  
Vol 12 (14) ◽  
pp. 5595 ◽  
Author(s):  
Ana Lavalle ◽  
Miguel A. Teruel ◽  
Alejandro Maté ◽  
Juan Trujillo

Fostering sustainability is paramount for Smart Cities development. Lately, Smart Cities are benefiting from the rising of Big Data coming from IoT devices, leading to improvements on monitoring and prevention. However, monitoring and prevention processes require visualization techniques as a key component. Indeed, in order to prevent possible hazards (such as fires, leaks, etc.) and optimize their resources, Smart Cities require adequate visualizations that provide insights to decision makers. Nevertheless, visualization of Big Data has always been a challenging issue, especially when such data are originated in real-time. This problem becomes even bigger in Smart City environments since we have to deal with many different groups of users and multiple heterogeneous data sources. Without a proper visualization methodology, complex dashboards including data from different nature are difficult to understand. In order to tackle this issue, we propose a methodology based on visualization techniques for Big Data, aimed at improving the evidence-gathering process by assisting users in the decision making in the context of Smart Cities. Moreover, in order to assess the impact of our proposal, a case study based on service calls for a fire department is presented. In this sense, our findings will be applied to data coming from citizen calls. Thus, the results of this work will contribute to the optimization of resources, namely fire extinguishing battalions, helping to improve their effectiveness and, as a result, the sustainability of a Smart City, operating better with less resources. Finally, in order to evaluate the impact of our proposal, we have performed an experiment, with non-expert users in data visualization.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammed Anouar Naoui ◽  
Brahim Lejdel ◽  
Mouloud Ayad ◽  
Abdelfattah Amamra ◽  
Okba kazar

PurposeThe purpose of this paper is to propose a distributed deep learning architecture for smart cities in big data systems.Design/methodology/approachWe have proposed an architectural multilayer to describe the distributed deep learning for smart cities in big data systems. The components of our system are Smart city layer, big data layer, and deep learning layer. The Smart city layer responsible for the question of Smart city components, its Internet of things, sensors and effectors, and its integration in the system, big data layer concerns data characteristics 10, and its distribution over the system. The deep learning layer is the model of our system. It is responsible for data analysis.FindingsWe apply our proposed architecture in a Smart environment and Smart energy. 10; In a Smart environment, we study the Toluene forecasting in Madrid Smart city. For Smart energy, we study wind energy foresting in Australia. Our proposed architecture can reduce the time of execution and improve the deep learning model, such as Long Term Short Memory10;.Research limitations/implicationsThis research needs the application of other deep learning models, such as convolution neuronal network and autoencoder.Practical implicationsFindings of the research will be helpful in Smart city architecture. It can provide a clear view into a Smart city, data storage, and data analysis. The 10; Toluene forecasting in a Smart environment can help the decision-maker to ensure environmental safety. The Smart energy of our proposed model can give a clear prediction of power generation.Originality/valueThe findings of this study are expected to contribute valuable information to decision-makers for a better understanding of the key to Smart city architecture. Its relation with data storage, processing, and data analysis.


Author(s):  
Makeri Yakubu Ajiji ◽  
Xi’an Jiaotong Victor Chang ◽  
Targio Hashem Ibrahim Abaker ◽  
Uzorka Afam ◽  
T Cirella Giuseppe

Today the world is becoming connected. The number of devices that are connected are increasing day by day. Many studies reveal that about 50 billion devices would be connected by 2020 indicating that Internet of things have a very big role to play in the future to come Considering the perplexing engineering of Smart City conditions, it ought not to be failed to remember that their establishment lies in correspondence advancements that permit availability and information move between the components in Smart City conditions. Remote interchanges with their capacities speak to Smart City empowering advancements that give the open door for their fast and effective execution and extension as well. The gigantic weight towards the proficient city the board has triggered various Smart City activities by both government and private area businesses to put resources into Information and Communication Technologies to discover feasible answers for the assorted chances and difficulties (e.g., waste the executives). A few specialists have endeavored to characterize a lot of shrewd urban areas and afterward recognize openings and difficulties in building brilliant urban communities. This short article likewise expresses the progressing movement of the Internet of Things and its relationship to keen urban communities. Advancement in ICT and data sharing innovation are the drivers of keen city degree and scale. This quick development is changing brilliant city development with the beginning of the Internet of Things (IoT). This transformation additionally speaks to difficulties in building (Kehua, Li, and Fu ,Su et al.1). By knowing the attributes of specific advances, the experts will have the occasion to create proficient, practical, and adaptable Smart City frameworks by actualizing the most reasonable one.


Sign in / Sign up

Export Citation Format

Share Document