scholarly journals Naturally Available Extracts Inhibiting Cancer Progression: A Systematic Review

2017 ◽  
Vol 22 (4) ◽  
pp. 870-878 ◽  
Author(s):  
Marin Abraham ◽  
Dominic Augustine ◽  
Roopa S. Rao ◽  
S. V. Sowmya ◽  
Vanishri C. Haragannavar ◽  
...  

Aim. This systematic review is aimed at evaluating the literature on the efficacy of naturally available extracts that inhibit cancer. Methods. A literature search was performed to strengthening the reporting of observational studies in epidemiology analysis. Approximately 3000 research articles were initially selected. Of these articles, 200 were included, and 2800 were excluded. On further scrutiny, 150 of the 200 studies were reviews, seminars, and presentations, and 50 were original study articles. Among these articles, 20 studies were selected for the systematic review. Results. The predominant molecular pathways followed by natural extracts were nuclear factor kappa B ligand, suppression of the protein kinase B-Akt/P13K pathway (an intracellular signaling pathway important in regulating cell cycle), vascular endothelial growth factor downregulation, and tumor protein-P53 tumor suppressor upregulation. Conclusions. It is evident that natural extracts have the ability to inhibit cancer progression. Continued research in this field could facilitate the use of natural extracts with currently available anticancer agents.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kanagasabai Balamurugan ◽  
Linda Koehler ◽  
Jan-Niklas Dürig ◽  
Ute Hempel ◽  
Jörg Rademann ◽  
...  

Abstract Angiogenesis is an important physiological process playing a crucial role in wound healing and cancer progression. Vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) are key players in angiogenesis. Based on previous findings regarding the modulation of VEGF activity by glycosaminoglycans (GAG), here we explore the interaction of hyaluronan (HA)-based GAG with PDGF and its receptor PDGFR-β by applying molecular modeling and dynamics simulations in combination with surface plasmon resonance (SPR). Computational analysis on the interaction of oligo-hyaluronan derivatives with different sulfation pattern and functionalization shows that these GAG interact with PDGF in relevant regions for receptor recognition, and that high sulfation as well as modification with the TAMRA group convey stronger binding. On the other hand, the studied oligo-hyaluronan derivatives are predicted to scarcely recognize PDGFR-β. SPR results are in line with the computational predictions regarding the binding pattern of HA tetrasaccharide (HA4) derivatives to PDGF and PDGFR-β. Furthermore, our experimental results also show that the complexation of PDGF to PDGFR-β can be modulated by HA4 derivatives. The results found open the path for considering HA4 derivatives as potential candidates to be exploited for modulation of the PDGF/PDGFR-β signaling system in angiogenesis and related disease conditions.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3228
Author(s):  
Shuntaro Takahashi ◽  
Boris Chelobanov ◽  
Ki Kim ◽  
Byeang Kim ◽  
Dmitry Stetsenko ◽  
...  

The formation of a guanine quadruplex DNA structure (G4) is known to repress the expression of certain cancer-related genes. Consequently, a mutated G4 sequence can affect quadruplex formation and induce cancer progression. In this study, we developed an oligonucleotide derivative consisting of a ligand-containing guanine tract that replaces the mutated G4 guanine tract at the promoter of the vascular endothelial growth factor (VEGF) gene. A ligand moiety consisting of three types of polyaromatic hydrocarbons, pyrene, anthracene, and perylene, was attached to either the 3′ or 5′ end of the guanine tract. Each of the ligand-conjugated guanine tracts, with the exception of anthracene derivatives, combined with other intact guanine tracts to form an intermolecular G4 on the mutated VEGF promoter. This intermolecular G4, exhibiting parallel topology and high thermal stability, enabled VEGF G4 formation to be recovered from the mutated sequence. Stability of the intramolecular G4 increased with the size of the conjugated ligand. However, suppression of intermolecular G4 replication was uniquely dependent on whether the ligand was attached to the 3′ or 5′ end of the guanine tract. These results indicate that binding to either the top or bottom guanine quartet affects unfolding kinetics due to polarization in DNA polymerase processivity. Our findings provide a novel strategy for recovering G4 formation in case of damage, and fine-tuning processes such as replication and transcription.


Sign in / Sign up

Export Citation Format

Share Document