scholarly journals THE ULTRASTRUCTURAL LOCALIZATION OF CYTOCHROME c-OXIDASE COMPLEX IN A LIPID-RETAINING, GLUTARALDEHYDE-UREA EMBEDMENT

1974 ◽  
Vol 22 (11) ◽  
pp. 1019-1027 ◽  
Author(s):  
IZHAK NIR ◽  
DANIEL C. PEASE

Kidney tissue, incubated in a phosphate-sucrose buffer with diaminobenzidine (DAB), subsequently was embedded in polymerized glutaraldehyde-urea (Pease and Peterson, 1972). The highly polar character of this embedment retains lipids in ultrathin sections and thus permits a precise localization of reaction products in relation to cytomembranes. Furthermore, since conventional organic solvents are not used during processing, it is thought that oxidized DAB polymers certainly remain in place. Their density can be enhanced by exposing mounted sections to OsO4 vapor, rather than by en bloc staining. DAB oxidation takes place only in the compartment between the inner and outer mitochondrial membranes. When aldehyde-fixed tissue is incubated, the deposits are largely limited to the intracristal spaces, whereas when fresh tissue is incubated, the entire compartment is uniformly filled. Morphologic features of fresh, unfixed tissue are stabilized by ethylene glycol and so survive incubation best when about 30% of this substance is added to the medium.

Author(s):  
S. K. Aggarwal ◽  
P. McAllister ◽  
R. W. Wagner ◽  
B. Rosenberg

Uranyl acetate has been used as an electron stain for en bloc staining as well as for staining ultrathin sections in conjunction with various lead stains (Fig. 1). Present studies reveal that various platinum compounds also show promise as electron stains. Certain platinum compounds have been shown to be effective anti-tumor agents. Of particular interest are the compounds with either uracil or thymine as one of the ligands (cis-Pt(II)-uracil; cis-Pt(II)-thymine). These compounds are amorphous, highly soluble in water and often exhibit an intense blue coloration. These compounds show enough electron density to be used as stains for electron microscopy. Most of the studies are based on various cell lines (human AV, cells, human lymphoma cells, KB cells, Sarcoma-180 ascites cells, chick fibroblasts and HeLa cells) while studies on tissue blocks are in progress.


Author(s):  
J.R. Walton

In electron microscopy, lead is the metal most widely used for enhancing specimen contrast. Lead citrate requires a pH of 12 to stain thin sections of epoxy-embedded material rapidly and intensively. However, this high alkalinity tends to leach out enzyme reaction products, making lead citrate unsuitable for many cytochemical studies. Substitution of the chelator aspartate for citrate allows staining to be carried out at pH 6 or 7 without apparent effect on cytochemical products. Moreover, due to the low, controlled level of free lead ions, contamination-free staining can be carried out en bloc, prior to dehydration and embedding. En bloc use of lead aspartate permits the grid-staining step to be bypassed, allowing samples to be examined immediately after thin-sectioning.Procedures. To prevent precipitation of lead salts, double- or glass-distilled H20 used in the stain and rinses should be boiled to drive off carbon dioxide and glassware should be carefully rinsed to remove any persisting traces of calcium ion.


Author(s):  
Taber A. Ba-Omar ◽  
Philip F. Prentis

We have recently carried out a study of spermiogenic differentiation in two geographically isolated populations of Aphanius dispar (freshwater teleost), with a view to ascertaining variation at the ultrastructural level. The sampling areas were the Jebel Al Akhdar in the north (Group A) and the Dhofar region (Group B) in the south. Specimens from each group were collected, the testes removed, fixed in Karnovsky solution, post fixed in OsO, en bloc stained with uranyl acetate and then routinely processed to Agar 100 resin, semi and ultrathin sections were prepared for study.


Author(s):  
Seiji Shioda ◽  
Yasumitsu Nakai ◽  
Atsushi Ichikawa ◽  
Hidehiko Ochiai ◽  
Nobuko Naito

The ultrastructure of neurosecretory cells and glia cells in the supraoptic nucleus (SON) of the hypothalamus and the neurohypophysis (PN) was studied after rapid freezing followed by substituion fixation. Also, the ultrastructural localization of vasopressin (VP) or its carrier protein neurophys in II (NPII) in the SON and PN was demonstrated by using a post-embedding immunoco1loidal gold staining method on the tissue sections processed by rapid freezing and freeze-substitution fixation.Adult male Wistar rat hypothalamus and pituitary gland were quenched by smashing against a copper block surface precooled with liquid helium and freeze-substituted in 3% osmium tetroxide-acetone solutions kept at -80°C for 36-48h. After substituion fixation, the tissue blocks were warmed up to room temperature, washed in acetone and then embedded in an Epon-Araldite mixture. Ultrathin sections mounted on 200 mesh nickel grids were immersed in saturated sodium metaperiodate and then incubated in each of the following solutions: 1 % egg albumin in phosphate buffer, VP or NPII (1/1000-1/5000) antiserum 24h at 4°C, 3) colloidal gold solution (1/20) 1h at 20°C. The sections were washed with distilled waterand dried, then stained with uranylacetate and lead citrate and examined with Hitachi HU-12A and H-800 electron microscopes.


2020 ◽  
pp. 48-55
Author(s):  
M.E. Sharanda ◽  
◽  
E.A. Bondarenko ◽  

Ethylene glycol and propylene glycol are important representatives of polyols. On an industrial scale, they are obtained from petrochemical raw materials. Within a decade, significant efforts were made for the producing of polyols from biologically renewable raw materials - carbohydrates. The general trend for carbohydrate hydrogenolysis includes application of liquid-phase process with the use of modified metal-oxide catalysts, at 120-120 ° C and pressure of 3MPa or above. So high pressure is used for the reason to increase hydrogen solubility, and also due to the high partial pressure of low boiling solvents. We supposed that usage of high boiling solvents could allow hydrogenolysis to be performed at the lower pressure. Ethylene glycol and propylene glycol are of particular interest as such kind of solvent since they are both the main products of glucose hydrogenolysis. In this work, the process of hydrogenolysis of glucose and fructose over Cu / MgO-ZrO2 catalyst have been studied at temperature range of 160-200 °C and a pressure of 0.1-0.3 MPa in a flow reactor. The solvents were simultaneously the target products of the reaction - ethylene glycol and / or propylene glycol. Gas chromatography and 13C NMR were used for the reaction products identification. It was found that the solubility of glucose in propylene glycol is 21 % by weight, and in ethylene glycol 62% by weight. It was pointed out that the process of hydrogenolysis can take place at a pressure close to atmospheric. Under these conditions, the conversion of hexoses reaches 96-100 %. The reaction products are preferably propylene glycol and ethylene glycol. The total selectivity for C3-2 polyols is 90-94 %, that is higher than in the hydrogenolysis of glucose in aqueous solution.


Clay Minerals ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 333-345 ◽  
Author(s):  
P. Komadel ◽  
J. Bujdák ◽  
J. Madejová ◽  
V. Šucha ◽  
F. Elsass

AbstractA series of reduced-charge montmorillonites (RCM), prepared from the same parent Li-montmorillonite (Jelšový Potok, Slovakia) by heating at various temperatures (105–210°C) for 24 h, was treated with 6 m HCl at 95°C for periods up to 30 h. Reaction solutions obtained were analysed for Al, Fe, Mg and Li and the solid reaction products were investigated by FTIR spectroscopy. Both analyses provided evidence that the extent of dissolution decreased with increased amounts of Li fixed within the montmorillonite structure, i.e. with increased heating temperature. Differences in the acid dissolution process were reflected in the structural changes which occurred within the RCM samples, due presumably to different positions of fixed Li. The ethylene glycol monoethyl ether (EGME) surface areas, and XRD and HRTEM analyses of the RCM series revealed an increased amount of non-swelling layers in the samples prepared at higher temperatures, which caused a substantially slower decomposition of M7 and M8 in HCl. The calculated XRD patterns of M6 and M7 confirmed the presence of 20% and 45% pyrophyllite-like layers, respectively, in these samples. Mixed-layer pyrophyllite-like-smectite and pyrophyllite-like crystals, containing only non-swelling layers, were found in sample M8. The results confirmed that the amount of swelling layers in RCM significantly affects their dissolution rate in HCl.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Nikki Mills ◽  
Donna T. Geddes ◽  
Satya Amirapu ◽  
S. Ali Mirjalili

Lingual frenotomy has become an increasingly common surgical procedure, performed for a broad range of indications from birth through adulthood. This study utilizes histology to define the structure and tissue composition of the lingual frenulum and floor of mouth (FOM) fascia. En bloc specimens of anterior tongue, lingual frenulum, and FOM tissues were harvested from ten embalmed adult cadavers. An additional three fresh tissue cadaveric specimens were frozen with the tongue supported in an elevated position, to enable harvesting and paraffin embedding of the elevated lingual frenulum as a discrete specimen. All 13 specimens were prepared as ten-micron coronal sections using stains to determine the general morphology of the lingual frenulum, its relationship to neighbouring structures (Mason’s Trichrome), presence of elastin fibers (Verhoeff-van Gieson), and collagen typing (Picrosirius Red). Our results have shown a submucosal layer of fascia spanning horizontally across the FOM was present in all specimens, with variability in fascial thickness and histologic composition. This FOM fascia suspends the sublingual glands, vessels, and genioglossus from its deep surface. The elevated lingual frenulum is formed by a central fold of this FOM fascia together with the overlying oral mucosa with variability in fascial thickness and composition. With tongue elevation, the fascia mobilizes to a variable extent into the fold forming the frenulum, providing a structural explanation for the individual variability in lingual frenulum morphology seen in clinical practice.


1974 ◽  
Vol 60 (3) ◽  
pp. 653-663 ◽  
Author(s):  
Akitsugu Saito ◽  
Murray Smigel ◽  
Sidney Fleischer

There have been several reports describing paracrystalline arrays in the intermembrane space of mitochondria. On closer inspection these structures appear to be junctions of two adjoining membranes. There are two types. They can be formed between the outer and inner mitochondrial membranes (designated outer-inner membrane junctions) or between two cristal membranes (intercristal membrane junctions). In rat heart, adjoining membranes appeared associated via a central dense midline approximately 30 Å wide. In rat kidney, the junction had a ladder-like appearance with electron-dense "bridges" approximately 80 Å wide, spaced 130 Å apart, connecting the adjoining membranes. We have investigated the conditions which favor the visualization of such structures in mitochondria. Heart mitochondria isolated rapidly from fresh tissue (within 30 min of death) contain membrane junctions in approximately 10–15% of the cross sections. This would indicate that the percentage of membrane junctions in the entire mitochondrion is far greater. Mitochondria isolated from heart tissue which was stored for 1 h at 0°–4°C showed an increased number of membrane junctions, so that 80% of the mitochondrial cross sections show membrane junctions. No membrane junctions are observed in mitochondria in rapidly fixed fresh tissue or in mitochondria isolated from tissue disrupted in fixative. Thus, the visualization of junctions in the intermembrane space of mitochondria appears to be dependent upon the storage of tissue after death. Membrane junctions can also be observed in mitochondria from other stored tissues such as skeletal muscle, kidney, and interstitial cells from large and small intestine. In each case, no such junctions are observed in these tissues when they are fixed immediately after removal from the animal. It would appear that most studies in the literature in which isolated mitochondria from tissues such as heart or kidney were used were carried out on mitochondria which contained membrane junctions. The presence of such structures does not significantly affect normal mitochondrial function in terms of respiratory control and oxidative phosphorylation.


1982 ◽  
Vol 30 (6) ◽  
pp. 524-531 ◽  
Author(s):  
F H Wezeman ◽  
G V Childs

Rabbit antibodies prepared against bovine cartilage anti-invasion factor (AIF) were tested for their affinity toward antigenic sites in glutaraldehyde-fixed bovine hyaline cartilage matrix. Ultrastructural localization of the antigen-antibody complex was accomplished by the unlabeled antibody peroxidase-antiperoxidase staining technique. Unextracted and salt-extracted (1 M NaCl or 3 M GuHCl) cartilage slices were incubated with anti-AIF antibodies at a working dilution of 1:20,000. Staining occurred in unextracted matrix distributed throughout the tissue, but with regional variation in the lacunar matrix. Significantly less stain was noted in extracted tissues. The results suggest that at least certain protein components in AIF are morphologically associated with matrix complexes in aldehyde-fixed tissue.


Sign in / Sign up

Export Citation Format

Share Document