Creation of a High Fidelity, Cost Effective, Real World Surgical Simulation for Surgical Education

Author(s):  
Lygia Stewart ◽  
Elizabeth De La Rosa

Background How do surgical residents learn to operate? What is a surgical plane? How does one learn to see and dissect the plane? How do surgical residents learn tissue handling and suturing (sewing)? One method to learn and practice performing surgery is through the use of simulation training. Surgical training models include laparoscopic box trainers (a plastic box with holes for instruments) with synthetic materials inside to simulate tissues, or computer-based virtual reality simulation for laparoscopic, endoscopic, and robotic techniques. These methods, however, do not use real tissues. They lack the haptic and kinesthetic feedback of real tissue. These simulations fail to recreate the fidelity of soft tissues, do not foster the ability to accurately see surgical planes, do not accurately mimic the act of dissecting surgical planes, do not allow for complex surgical procedures, and do not provide accurate experience to learn tissue handling and suturing. Despite their poor performance, these plastic and virtual trainers are extremely costly to purchase, maintain, and keep up to date - with prices starting at $700 for basic plastic training boxes to thousands of dollars for virtual simulation. Also, there are additional costs of maintenance and software curriculum. Despite the cost of software, virtual simulators do not include a simulation for every surgery. Our aim was to create a life-like surgical simulation as close to real world as possible that allows trainees to learn how to see and dissect surgical planes, learn how soft tissues move, and learn the dynamics of soft tissue manipulation. We created a laparoscopic simulator using porcine tissues for gallbladder removal, acid reflux surgery, and surgery to treat swallowing difficulties (cholecystectomy, Nissen fundoplication, and Heller myotomy, respectively). Second year general surgery residents were able to practice these procedures on real tissues, enabling them to learn the steps of each procedure, increase manual dexterity, improve use of laparoscopic equipment, all while maintaining life-like haptic, soft-tissue feedback and enabling them to develop the ability to see real surgical planes. Methods The abdomen was recreated by purchasing intact porcine liver, gallbladder, (Cholecystectomy simulation) and intact esophagus, stomach, and diaphragm (Nissen and Heller simulation) from a packing supplier. Each organ system was placed into a laparoscopic trainer box with the ability to re-create laparoscopic ports. Surgical residents were then able to perform the procedures using real laparoscopic instruments, laparoscopic camera/video imaging, and real-time electrocautery. The simulation included all critical steps of each procedure such as obtaining the critical view of safety and removing the gallbladder from the liver bed (cholecystectomy), wrapping the stomach around the esophagus and laparoscopic suturing (Nissen fundoplication), and dissecting the muscular portion of the esophageal wall (Heller myotomy). Because these porcine tissues were readily available, several stations were set-up to teach multiple residents during each session (10-12 residents / session). Discussion Surgeons develop haptic perception of soft tissues by cutaneous or tactile feedback and kinesthetic feedback (Okamura, 2009). Kinesthetic feedback is the force and pressure transmitted by the soft tissues along the shaft of the laparoscopic instruments (Okamura, 2009). This soft tissue simulation re-creates the ability to experience what soft tissue feedback feels like, outside a normal operative environment. Real tissue learning allows trainees to learn how to see surgical planes, learn how soft tissues feel and move, develop proficiency in surgical dissection, and learn how to suture laparoscopically. This is the only model that recreates the movement of soft tissues and visualization of dissection planes outside the operative environment. Because this model utilizes the laparoscopic instruments used in the operating room, residents also develop familiarity with laparoscopic instruments, thus, flattening another learning curve. A literature review found that this is the only real tissue simulation being performed for foregut procedures used specifically for resident training. By building a realistic, anatomical model with inherent accurate soft tissue surgical planes, surgical trainees can have a more realistic surgical experience and develop skills in a safe, low pressure environment without sacrificing the hepatic learning and surgical visualization that is critical to performing safe laparoscopic surgery. All residents that participated in the stimulation reported positive feedback and felt that is contributed to their surgical education.

Author(s):  
Salina Sulaiman ◽  
Tan Sing Yee ◽  
Abdullah Bade

Physically based models assimilate organ-specific material properties, thus they are suitable in developing a surgical simulation. This study uses mass spring model (MSM) to represent the human liver because MSM is a discrete model that is potentially more realistic than the finite element model (FEM). For a high-end computer aided medical technology such as the surgical simulator, the most important issues are to fulfil the basic requirement of a surgical simulator. Novice and experienced surgeons use surgical simulator for surgery training and planning. Therefore, surgical simulation must provide a realistic and fast responding virtual environment. This study focuses on fulfilling the time complexity and realistic of the surgical simulator. In order to have a fast responding simulation, the choice of numerical integration method is crucial. This study shows that MATLAB ode45 is the fastest method compared to 2nd ordered Euler, MATLAB ode113, MATLAB ode23s and MATLAB ode23t. However, the major issue is human liver consists of soft tissues. In modelling a soft tissue model, we need to understand the mechanical response of soft tissues to surgical manipulation. Any interaction between haptic device and the liver model may causes large deformation and topology change in the soft tissue model. Thus, this study investigates and presents the effect of varying mass, damping, stiffness coefficient on the nonlinear liver mass spring model. MATLAB performs and shows simulation results for each of the experiment. Additionally, the observed optimal dataset of liver behaviour is applied in SOFA (Simulation Open Framework Architecture) to visualize the major effect.


2016 ◽  
Vol 16 (08) ◽  
pp. 1640016 ◽  
Author(s):  
JING YANG ◽  
LINGTAO YU ◽  
LAN WANG ◽  
HONGYANG LI ◽  
QI AN

In recent years, virtual surgical simulation has been one of the hot direction of digital medical research, it is mainly used in teaching, training, diagnosis, preoperative planning, rehabilitation and modeling and analysis of surgical instruments. The modeling of soft tissue of human organs is the basis to realize the virtual surgical simulation. The quasi-linear viscoelastic (QLV) theory has been proposed by Fung, and it was widely used for modeling the constitutive equation of soft tissues. The purpose of this study is to determine the mechanical characterization of the liver soft tissue based on the PHANTOM Omni Haptic devices. Five parameters are included in the constitutive equation with QLV theory, which must be determined experimentally. The specimens were obtained from fresh porcine liver tissues in vitro. The liver tissues were cut into 14[Formula: see text]mm[Formula: see text][Formula: see text][Formula: see text]14[Formula: see text]mm[Formula: see text][Formula: see text][Formula: see text]14[Formula: see text]mm cubes. Two types of unconfined compression tests were performed on cube liver specimens. Puncture tests were performed on the complete liver. The material parameters of the QLV constitutive equation were obtained by fitting the experimental data. These parameters will provide the references for the computational modeling of the liver in the virtual surgical simulation.


Author(s):  
Filippo Boriani ◽  
Edoardo Raposio ◽  
Costantino Errani

: Musculoskeletal tumors of the hand are a rare entity and are divided into skeletal and soft tissue tumors. Either category comprises benign and malignant or even intermediate tumors. Basic radiology allows an optimal resolution of bone and related soft tissue areas, ultrasound and more sophisticated radiologic tools such as scintigraphy, CT and MRI allow a more accurate evaluation of tumor extent. Enchondroma is the most common benign tumor affecting bone, whereas chondrosarcoma is the most commonly represented malignant neoplasm localized to hand bones. In the soft tissues ganglions are the most common benign tumors and epithelioid sarcoma is the most frequently represented malignant tumor targeting hand soft tissues. The knowledge regarding diagnostic and therapeutic management of these tumors is often deriving from small case series, retrospective studies or even case reports. Evidences from prospective studies or controlled trials are limited and for this lack of clear and supported evidences data from the medical literature on the topic are controversial, in terms of demographics, clinical presentation, diagnosis prognosis and therapy.The correct recognition of the specific subtype and extension of the tumor through first line and second line radiology is essential for the surgeon, in order to effectively direct the therapeutic decisions.


Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 67
Author(s):  
Song Joo Lee ◽  
Yong-Eun Cho ◽  
Kyung-Hyun Kim ◽  
Deukhee Lee

Knowing the material properties of the musculoskeletal soft tissue could be important to develop rehabilitation therapy and surgical procedures. However, there is a lack of devices and information on the viscoelastic properties of soft tissues around the lumbar spine. The goal of this study was to develop a portable quantifying device for providing strain and stress curves of muscles and ligaments around the lumbar spine at various stretching speeds. Each sample was conditioned and applied for 20 repeatable cyclic 5 mm stretch-and-relax trials in the direction and perpendicular direction of the fiber at 2, 3 and 5 mm/s. Our device successfully provided the stress and strain curve of the samples and our results showed that there were significant effects of speed on the young’s modulus of the samples (p < 0.05). Compared to the expensive commercial device, our lower-cost device provided comparable stress and strain curves of the sample. Based on our device and findings, various sizes of samples can be measured and viscoelastic properties of the soft tissues can be obtained. Our portable device and approach can help to investigate young’s modulus of musculoskeletal soft tissues conveniently, and can be a basis for developing a material testing device in a surgical room or various lab environments.


Arthroplasty ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Toni Wendler ◽  
Torsten Prietzel ◽  
Robert Möbius ◽  
Jean-Pierre Fischer ◽  
Andreas Roth ◽  
...  

Abstract Background All current total hip arthroplasty (THA) systems are modular in design. Only during the operation femoral head and stem get connected by a Morse taper junction. The junction is realized by hammer blows from the surgeon. Decisive for the junction strength is the maximum force acting once in the direction of the neck axis, which is mainly influenced by the applied impulse and surrounding soft tissues. This leads to large differences in assembly forces between the surgeries. This study aimed to quantify the assembly forces of different surgeons under influence of surrounding soft tissue. Methods First, a measuring system, consisting of a prosthesis and a hammer, was developed. Both components are equipped with a piezoelectric force sensor. Initially, in situ experiments on human cadavers were carried out using this system in order to determine the actual assembly forces and to characterize the influence of human soft tissues. Afterwards, an in vitro model in the form of an artificial femur (Sawbones Europe AB, Malmo, Sweden) with implanted measuring stem embedded in gelatine was developed. The gelatine mixture was chosen in such a way that assembly forces applied to the model corresponded to those in situ. A study involving 31 surgeons was carried out on the aforementioned in vitro model, in which the assembly forces were determined. Results A model was developed, with the influence of human soft tissues being taken into account. The assembly forces measured on the in vitro model were, on average, 2037.2 N ± 724.9 N, ranging from 822.5 N to 3835.2 N. The comparison among the surgeons showed no significant differences in sex (P = 0.09), work experience (P = 0.71) and number of THAs performed per year (P = 0.69). Conclusions All measured assembly forces were below 4 kN, which is recommended in the literature. This could lead to increased corrosion following fretting in the head-neck interface. In addition, there was a very wide range of assembly forces among the surgeons, although other influencing factors such as different implant sizes or materials were not taken into account. To ensure optimal assembly force, the impaction should be standardized, e.g., by using an appropriate surgical instrument.


2021 ◽  
Vol 23 (9) ◽  
Author(s):  
Andrea Di Matteo ◽  
Gianluca Smerilli ◽  
Edoardo Cipolletta ◽  
Fausto Salaffi ◽  
Rossella De Angelis ◽  
...  

Abstract Purpose of Review To highlight the potential uses and applications of imaging in the assessment of the most common and relevant musculoskeletal (MSK) manifestations in systemic lupus erythematosus (SLE). Recent Findings Ultrasound (US) and magnetic resonance imaging (MRI) are accurate and sensitive in the assessment of inflammation and structural damage at the joint and soft tissue structures in patients with SLE. The US is particularly helpful for the detection of joint and/or tendon inflammation in patients with arthralgia but without clinical synovitis, and for the early identification of bone erosions. MRI plays a key role in the early diagnosis of osteonecrosis and in the assessment of muscle involvement (i.e., myositis and myopathy). Conventional radiography (CR) remains the traditional gold standard for the evaluation of structural damage in patients with joint involvement, and for the study of bone pathology. The diagnostic value of CR is affected by the poor sensitivity in demonstrating early structural changes at joint and soft tissue level. Computed tomography allows a detailed evaluation of bone damage. However, the inability to distinguish different soft tissues and the need for ionizing radiation limit its use to selected clinical circumstances. Nuclear imaging techniques are valuable resources in patients with suspected bone infection (i.e., osteomyelitis), especially when MRI is contraindicated. Finally, dual energy X-ray absorptiometry represents the imaging mainstay for the assessment and monitoring of bone status in patients with or at-risk of osteoporosis. Summary Imaging provides relevant and valuable information in the assessment of MSK involvement in SLE.


Author(s):  
Sebastian Halm ◽  
David Haberthür ◽  
Elisabeth Eppler ◽  
Valentin Djonov ◽  
Andreas Arnold

Abstract Introduction This pilot study explores whether a human Thiel-embalmed temporal bone is suitable for generating an accurate and complete data set with micro-computed tomography (micro-CT) and whether solid iodine-staining improves visualization and facilitates segmentation of middle ear structures. Methods A temporal bone was used to verify the accuracy of the imaging by first digitally measuring the stapes on the tomography images and then physically under the microscope after removal from the temporal bone. All measurements were compared with literature values. The contralateral temporal bone was used to evaluate segmentation and three-dimensional (3D) modeling after iodine staining and micro-CT scanning. Results The digital and physical stapes measurements differed by 0.01–0.17 mm or 1–19%, respectively, but correlated well with the literature values. Soft tissue structures were visible in the unstained scan. However, iodine staining increased the contrast-to-noise ratio by a factor of 3.7 on average. The 3D model depicts all ossicles and soft tissue structures in detail, including the chorda tympani, which was not visible in the unstained scan. Conclusions Micro-CT imaging of a Thiel-embalmed temporal bone accurately represented the entire anatomy. Iodine staining considerably increased the contrast of soft tissues, simplified segmentation and enabled detailed 3D modeling of the middle ear.


2021 ◽  
pp. 105566562110076
Author(s):  
Maria Costanza Meazzini ◽  
Noah Cohen ◽  
Valeria Marinella Augusta Battista ◽  
Cristina Incorvati ◽  
Federico Biglioli ◽  
...  

Background: Closure of wide alveolar clefts with large soft tissue gaps and reconstruction of the dentoalveolar defect are challenging for the surgeon. Some authors successfully used interdental segmental distraction, which requires an additional surgical procedure. Objective: This study evaluates the effectiveness of tooth borne devices utilized to orthopedically advance the lesser segments, with a complete approximation of the soft tissue of the alveolar stumps, allowing traditional simultaneous soft tissue closure and bone grafting, and avoiding the need for supplementary surgery. Methods: Eight growing patients, 2 with unilateral complete cleft lip and palate (UCLP) and 6 with bilateral complete cleft lip and palate (BCLP), with large soft tissue and bony alveolar defects prior to bone grafting were prospectively selected. A banded rapid palatal expander (RPE) in BCLP and a modified RPE in UCLP combined with protraction face mask in younger patients or a modified Alt-Ramec in patients older than 12 years were applied. Radiographic and photographic records were available at T0, at the end of protraction (T1) and at least 1 year after bone grafting (T2). Results: Patients with large gaps showed a significant reduction in the bony cleft area and approximation of the soft tissues at T1. All patients received bone grafting with good healing and ossification at T2. Conclusion: In growing patients with UCLP and BCLP with large gaps, presurgical orthodontic protraction seems to be an efficient method to reduce the cleft defect, minimizing the risk of post grafting fistulas, reducing the need for supplementary surgical procedures.


2020 ◽  
Vol 54 (4) ◽  
pp. 289-296
Author(s):  
Adeeba Ali ◽  
Anil K. Chandna ◽  
Anshul Munjal

Background: Concerns about the accuracy and reliability of soft tissue landmarks using two-dimensional (2D) and three-dimensional (3D) imaging. Objective: The aim of the systematic review is to estimate accuracy and reliability of soft tissue landmarks with 2D imaging and 3D imaging for orthodontic diagnosis planning and treatment planning purposes. Data Sources: Electronic database search was performed in MEDLINE via PubMed, Embase via embase.com, and the Cochrane library website. Selection Criteria: The data were extracted according to two protocols based on Centre for Evidence-Based Medicine (CEBM) critical appraisal tools. Next, levels of evidence were categorized into three groups: low, medium, and high. Data Synthesis: Fifty-five publications were found through database search strategies. A total of nine publications were included in this review. Conclusion According to the available literature, 3D imaging modalities were more accurate and reliable as compared to 2D modalities. Cone beam computed tomography (CBCT) was considered the most reliable imaging tool for soft tissues.


2007 ◽  
Vol 274 (1607) ◽  
pp. 183-197 ◽  
Author(s):  
Mary Higby Schweitzer ◽  
Jennifer L Wittmeyer ◽  
John R Horner

Soft tissues and cell-like microstructures derived from skeletal elements of a well-preserved Tyrannosaurus rex (MOR 1125) were represented by four components in fragments of demineralized cortical and/or medullary bone: flexible and fibrous bone matrix; transparent, hollow and pliable blood vessels; intravascular material, including in some cases, structures morphologically reminiscent of vertebrate red blood cells; and osteocytes with intracellular contents and flexible filipodia. The present study attempts to trace the occurrence of these four components in bone from specimens spanning multiple geological time periods and varied depositional environments. At least three of the four components persist in some skeletal elements of specimens dating to the Campanian. Fibrous bone matrix is more altered over time in morphology and less likely to persist than vessels and/or osteocytes. Vessels vary greatly in preservation, even within the same specimen, with some regions retaining pliability and other regions almost crystalline. Osteocytes also vary, with some retaining long filipodia and transparency, while others present with short and stubby filipodia and deeply pigmented nuclei, or are pigmented throughout with no nucleus visible. Alternative hypotheses are considered to explain the origin/source of observed materials. Finally, a two-part mechanism, involving first cross-linking of molecular components and subsequent mineralization, is proposed to explain the surprising presence of still -soft elements in fossil bone. These results suggest that present models of fossilization processes may be incomplete and that soft tissue elements may be more commonly preserved, even in older specimens, than previously thought. Additionally, in many cases, osteocytes with defined nuclei are preserved, and may represent an important source for informative molecular data.


Sign in / Sign up

Export Citation Format

Share Document