scholarly journals Examining the role of hexagonal boron nitride nanoparticles as an additive in the lubricating oil and studying its application

Author(s):  
Sangharatna Ramteke ◽  
H Chelladurai

Lubricating oil plays an important role in minimizing the friction and wear of many mechanical systems. The additives present in the conventional lubricant are inadequate to reduce the friction and wear of today’s mechanical systems. However, the use of these additives has a significant effect on the environment due to their fast chemical degradation. In recent years, nanoparticle-based lubricant has attracted great attention due to their friction reduction behavior. Therefore, it is of great importance to examine the role of nanoparticle addition in the conventional lubricant and its influence on the tribological characteristics of the mechanical systems. Hence, this research work focused on the formulation of hexagonal boron nitride nanoparticle-based nanofluids and its effect on the tribological characteristics of cylinder liner and piston rings of a realistic diesel engine. The different concentrations of hBN nanoparticle-based nanofluids were formulated and characterized using the ultraviolet–visible spectroscopy and the thermal gravimetric analysis. The results of the experimental analysis showed that hBN nanoparticles as an additive in the lubricating oil exhibited better anti-wear and friction reduction behavior than the conventional base oil 20W40.

2018 ◽  
Vol 30 (8) ◽  
pp. 441-456 ◽  
Author(s):  
Manoj Kumar Gupta ◽  
Jayashree Bijwe ◽  
Meghashree Padhan

2021 ◽  
Author(s):  
M. Oechsner ◽  
T. Engler ◽  
H. Scheerer ◽  
Y. Joung ◽  
K. Bobzin ◽  
...  

Abstract High-velocity oxyfuel (HVOF) sprayed coatings of Cr3C2-NiCr containing solid lubricants such as nickel cladded graphite and hexagonal boron nitride were successfully developed and characterised with the aim of optimizing their friction and wear behaviour. HVOF technology was used for the integration of solid lubricants to achieve strong cohesion between particles while minimizing thermal decomposition. Coating microstructure and composition were measured and correlated to the results of tribological and corrosion tests. The integration of the solid lubricant greatly reduced friction and wear volume at room temperature, but the lubricating effect was highly dependent on atmosphere and temperature. Cr3C2-NiCr with hBN, however, tends to exhibit more stable wear resistance over a wider temperature range and can be used at temperatures beyond 450 °C.


2016 ◽  
Vol 68 (4) ◽  
pp. 441-445 ◽  
Author(s):  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Mohd Fadzli Bin Abdollah ◽  
Noreffendy Tamaldin ◽  
Hilmi Amiruddin ◽  
Nur Rashid Mat Nuri

Purpose This paper aims to investigate the effect of hexagonal boron nitride (hBN) nanoparticles on extreme pressure (EP) properties when used as an additive in lubricating oil. Design/methodology/approach The nano-oil was prepared by dispersing an optimal composition of 0.5 vol. per cent of 70 nm hBN in SAE 15W-40 diesel engine oil using a sonication technique. The tribological testing was performed using a four-ball tribometer according to the ASTM standard. Findings It was found that the nano-oil has a potential to decelerate the seizure point on the contact surfaces, where higher EP can be obtained. More adhesive wear was observed on the worn surfaces of ball bearing lubricated with SAE 15W-40 diesel engine oil as compared with the nano-oil lubrication. Originality/value The results of the experimental studies demonstrated the potential of hBN as an additive for improving the load-carrying ability of lubricating oil.


2020 ◽  
Author(s):  
Peter Kraus ◽  
R. Peter Lindstedt

We investigate the role of gas-phase phenomena in the heterogeneous oxidative dehydrogenation of propane over hexagonal boron nitride. We apply a recently developed gas-phase combustion model for low-temperature combustion of propane and couple it with several surface microkinetic mechanisms to probe the selectivity limits using the open-source flame solver Cantera. We show that while the conversion of propane is surface-driven, the selectivities are significantly influenced by the gas-phase, especially when dilute catalyst beds are used.<br>


Author(s):  
Jae-Kap Lee ◽  
Jin-Gyu Kim ◽  
K. P. S. S. Hembram ◽  
Seunggun Yu ◽  
Sang-Gil Lee

Hexagonal boron nitride (h-BN) has been generally interpreted as having an AA stacking sequence. Evidence is presented in this article indicating that typical commercial h-BN platelets (∼10–500 nm in thickness) exhibit stacks of parallel nanosheets (∼10 nm in thickness) predominantly in the AB sequence. The AB-stacked nanosheet occurs as a metastable phase of h-BN resulting from the preferred texture and lateral growth of armchair (110) planes. It appears as an independent nanosheet or unit for h-BN platelets. The analysis is supported by simulation of thin AB films (2–20 layers), which explains the unique X-ray diffraction pattern of h-BN. With this analysis and the role of pressure in commercial high-pressure high-temperature sintering (driving nucleation and parallelizing the in-plane crystalline growth of the nuclei), a growth mechanism is proposed for 2D h-BN (on a substrate) as `substrate-induced 2D growth', where the substrate plays the role of pressure.


2019 ◽  
Vol 118 (4) ◽  
pp. 153-158
Author(s):  
David J. Nash ◽  
Katerina L. Chagoya ◽  
Alan Felix ◽  
Fernand E. Torres-Davila ◽  
Tao Jiang ◽  
...  

2014 ◽  
Vol 105 (19) ◽  
pp. 191610 ◽  
Author(s):  
J. Dabrowski ◽  
G. Lippert ◽  
T. Schroeder ◽  
G. Lupina

Sign in / Sign up

Export Citation Format

Share Document