Discovery of the SMYD3 Inhibitor BAY-6035 Using Thermal Shift Assay (TSA)-Based High-Throughput Screening

2021 ◽  
pp. 247255522110194
Author(s):  
Stefan Gradl ◽  
Holger Steuber ◽  
Joerg Weiske ◽  
Magda M. Szewczyk ◽  
Norbert Schmees ◽  
...  

SMYD3 (SET and MYND domain-containing protein 3) is a protein lysine methyltransferase that was initially described as an H3K4 methyltransferase involved in transcriptional regulation. SMYD3 has been reported to methylate and regulate several nonhistone proteins relevant to cancer, including mitogen-activated protein kinase kinase kinase 2 (MAP3K2), vascular endothelial growth factor receptor 1 (VEGFR1), and the human epidermal growth factor receptor 2 (HER2). In addition, overexpression of SMYD3 has been linked to poor prognosis in certain cancers, suggesting SMYD3 as a potential oncogene and attractive cancer drug target. Here we report the discovery of a novel SMYD3 inhibitor. We performed a thermal shift assay (TSA)-based high-throughput screening (HTS) with 410,000 compounds and identified a novel benzodiazepine-based SMYD3 inhibitor series. Crystal structures revealed that this series binds to the substrate binding site and occupies the hydrophobic lysine binding pocket via an unprecedented hydrogen bonding pattern. Biochemical assays showed substrate competitive behavior. Following optimization and extensive biophysical validation with surface plasmon resonance (SPR) analysis and isothermal titration calorimetry (ITC), we identified BAY-6035, which shows nanomolar potency and selectivity against kinases and other PKMTs. Furthermore, BAY-6035 specifically inhibits methylation of MAP3K2 by SMYD3 in a cellular mechanistic assay with an IC50 <100 nM. Moreover, we describe a congeneric negative control to BAY-6035. In summary, BAY-6035 is a novel selective and potent SMYD3 inhibitor probe that will foster the exploration of the biological role of SMYD3 in diseased and nondiseased tissues.

2001 ◽  
Vol 6 (3) ◽  
pp. 171-177 ◽  
Author(s):  
David Aviezer ◽  
Andrew P. Seddon ◽  
Mary Jo Wildey ◽  
Peter Böhlen ◽  
Avner Yayon

High throughput screening (HTS) of large compound libraries for inhibitors of growth factors raises the requirement for simple yet reliable assays. Fibroblast growth factors (FGFs) play a pivotal role in the multistep pathway of malignant transformation, tumor progression, metastasis, and angiogenesis. FGF-2 (basic FGF) requires a cooperative interaction with heparin or heparan sulfate proteoglycans in order to form functional growth factor-receptor complexes that are essential for receptor binding and activation. We have developed a simple screening system, devised to identify molecules that modulate heparin-FGF-receptor interactions. The system is composed of a heparin matrix, FGF-2, and a FGF receptor-1 protein engineered by genetically fusing the extracellular domain of FGF receptor-1 to alkaline phosphatase (FRAP). The screen is conducted using 96-well plates to which heparin has been covalently attached. FGF-2 is then bound to the plates through heparin-FGF interactions, followed by the addition of FRAP and compounds to be screened for modulation of heparin-FGF, receptor-heparin, and receptor-FGF interactions. The endpoint of the assay is measured enzymatically using the alkaline phosphatase (AP)-catalyzed formation of a chromogenic product, which is directly proportional to the amount of FRAP present on the plates as a heparin-FGF-FRAP ternary complex. Reduced AP values relative to control, as measured by spectrophotometry, indicate inhibition of the formation of an active FGF-receptor-heparin complex. The simple and versatile nature of the assay makes it an attractive HTS system. The screen has identified several potent inhibitors of FGF-2 receptor binding and activation. Furthermore, secondary screening of the HTS-recognized compounds identified several compounds that have the capacity to block growth factor-mediated tumor progression and angiogenesis in vivo.


2021 ◽  
Vol 10 (5) ◽  
pp. 1054
Author(s):  
Sean M. Barber ◽  
Saeed S. Sadrameli ◽  
Jonathan J. Lee ◽  
Jared S. Fridley ◽  
Bin S. Teh ◽  
...  

Chordoma is a low-grade notochordal tumor of the skull base, mobile spine and sacrum which behaves malignantly and confers a poor prognosis despite indolent growth patterns. These tumors often present late in the disease course, tend to encapsulate adjacent neurovascular anatomy, seed resection cavities, recur locally and respond poorly to radiotherapy and conventional chemotherapy, all of which make chordomas challenging to treat. Extent of surgical resection and adequacy of surgical margins are the most important prognostic factors and thus patients with chordoma should be cared for by a highly experienced, multi-disciplinary surgical team in a quaternary center. Ongoing research into the molecular pathophysiology of chordoma has led to the discovery of several pathways that may serve as potential targets for molecular therapy, including a multitude of receptor tyrosine kinases (e.g., platelet-derived growth factor receptor [PDGFR], epidermal growth factor receptor [EGFR]), downstream cascades (e.g., phosphoinositide 3-kinase [PI3K]/protein kinase B [Akt]/mechanistic target of rapamycin [mTOR]), brachyury—a transcription factor expressed ubiquitously in chordoma but not in other tissues—and the fibroblast growth factor [FGF]/mitogen-activated protein kinase kinase [MEK]/extracellular signal-regulated kinase [ERK] pathway. In this review article, the pathophysiology, diagnosis and modern treatment paradigms of chordoma will be discussed with an emphasis on the ongoing research and advances in the field that may lead to improved outcomes for patients with this challenging disease.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3355 ◽  
Author(s):  
Wanyoung Lim ◽  
Sungsu Park

Three-dimensional (3D) cell culture is considered more clinically relevant in mimicking the structural and physiological conditions of tumors in vivo compared to two-dimensional cell cultures. In recent years, high-throughput screening (HTS) in 3D cell arrays has been extensively used for drug discovery because of its usability and applicability. Herein, we developed a microfluidic spheroid culture device (μFSCD) with a concentration gradient generator (CGG) that enabled cells to form spheroids and grow in the presence of cancer drug gradients. The device is composed of concave microwells with several serpentine micro-channels which generate a concentration gradient. Once the colon cancer cells (HCT116) formed a single spheroid (approximately 120 μm in diameter) in each microwell, spheroids were perfused in the presence of the cancer drug gradient irinotecan for three days. The number of spheroids, roundness, and cell viability, were inversely proportional to the drug concentration. These results suggest that the μFSCD with a CGG has the potential to become an HTS platform for screening the efficacy of cancer drugs.


Sign in / Sign up

Export Citation Format

Share Document