scholarly journals Presence of adenosine deaminase on the surface of mononuclear blood cells: immunochemical localization using light and electron microscopy.

1991 ◽  
Vol 39 (8) ◽  
pp. 1001-1008 ◽  
Author(s):  
J M Aran ◽  
D Colomer ◽  
E Matutes ◽  
J L Vives-Corrons ◽  
R Franco

Adenosine deaminase, which is essential for lymphoid differentiation and function, has previously been considered to be a cytosolic enzyme. In this report we demonstrate that it can be found associated with the plasma membrane of lymphocytes. By means of immunological techniques using both light and electron microscopy, adenosine deaminase was localized on the external side of the plasma membrane of normal lymphocytes and monocytes. Since the enzyme expression differed depending on the type of cell examined, new hypotheses about the mechanisms involving purine metabolism in immune dysfunctions or immunodeficiency syndromes may be considered.

2019 ◽  
Vol 151 (8) ◽  
pp. 974-985 ◽  
Author(s):  
Justin W. Taraska

The plasma membrane separates a cell from its external environment. All materials and signals that enter or leave the cell must cross this hydrophobic barrier. Understanding the architecture and dynamics of the plasma membrane has been a central focus of general cellular physiology. Both light and electron microscopy have been fundamental in this endeavor and have been used to reveal the dense, complex, and dynamic nanoscale landscape of the plasma membrane. Here, I review classic and recent developments in the methods used to image and study the structure of the plasma membrane, particularly light, electron, and correlative microscopies. I will discuss their history and use for mapping the plasma membrane and focus on how these tools have provided a structural framework for understanding the membrane at the scale of molecules. Finally, I will describe how these studies provide a roadmap for determining the nanoscale architecture of other organelles and entire cells in order to bridge the gap between cellular form and function.


1981 ◽  
Vol 59 (5) ◽  
pp. 908-928 ◽  
Author(s):  
Martha J. Powell ◽  
Charles E. Bracker ◽  
David J. Sternshein

The cytological events involved in the transformation of vegetative hyphae of the zygomycete Gilbertella persicaria (Eddy) Hesseltine into chlamydospores were studied with light and electron microscopy. Thirty hours after sporangiospores were inoculated into YPG broth, swellings appeared along the aseptate hyphae. Later, septa, traversed by plasmodesmata, delimited each end of the hyphal swellings and compartmentalized these hyphal regions as they differentiated into chlamydospores. Nonswollen regions adjacent to chlamydospores remained as isthmuses. Two additional wall layers appeared within the vegetative wall of the developing chlamydospores. An alveolate, electron-dense wall formed first, and then an electron-transparent layer containing concentrically oriented fibers formed between this layer and the plasma membrane. Rather than a mere condensation of cytoplasm, development and maturation of the multinucleate chlamydospores involved extensive cytoplasmic changes such as an increase in reserve products, lipid and glycogen, an increase and then disappearance of vacuoles, and the breakdown of many mitochondria. Underlying the plasma membrane during chlamydospore wall formation were endoplasmic reticulum, multivesicular bodies, vesicles with fibrillar contents, vesicles with electron-transparent contents, and cisternal rings containing the Golgi apparatus marker enzyme, thiamine pyrophosphatase. Acid phosphatase activity was localized cytochemically in a cisterna which enclosed mitochondria and in vacuoles which contained membrane fragments. Tightly packed membrane whorls and single membrane bounded sacs with finely granular matrices surrounding vacuoles were unique during chlamydospore development. Microbodies were rare in the mature chlamydospore, but endoplasmic reticulum was closely associated with lipid globules. As chlamydospores developed, the cytoplasm in the isthmus became highly vacuolated, lipid globules were closely associated with vacuoles, mitochondria were broken down in vacuoles, unusual membrane configurations appeared, and eventually the membranes degenerated. Unlike chlamydospores, walls of the isthmus did not thicken, but irregularly shaped appositions containing numerous channels formed at intervals on the inside of these walls. The pattern of cytoplasmic transformations during chlamydospore development is similar to events leading to the formation of zygospores and sporangiospores.


1979 ◽  
Vol 83 (2) ◽  
pp. 338-347 ◽  
Author(s):  
M Büechi ◽  
T Bächi

A method was developed for directly observing the inner surfaces of plasma membranes by light and electron microscopy. Human erythrocytes were attached to cover slips (glass or mica) treated with aminopropylsilane and glutaraldehyde, and then disrupted by direct application of a jet of buffer, which removed the distal portion of the cells, thus exposing the cytoplasmic surface (PS) of the flattened membranes. Antispectrin antibodies and Sendai virus particles were employed as sensitive markers for, respectively, the PS and the external surface (ES) of the membrane; their localization by immunofluorescence or electron microscopy demonstrated that the major asymmetrical features of the plasma membrane were preserved. The fusion of Sendai virus particles with cells was investigated using double-labeling immunofluorescence techniques. Virus adsorbed to the ES of cells at 4 degrees C was not accessible to fluorescein-labeled antibodies applied from the PS side. After incubation at 37 degrees C, viral antigens could be detected at the PS. These antigens, however, remained localized and did not diffuse from the site of attachment, as is usually seen in viral antigens accessible on the ES. They may therefore represent internal viral antigens not incorporated into the plasma membrane as a result of virus-cell fusion.


1974 ◽  
Vol 31 (2) ◽  
pp. 147-153 ◽  
Author(s):  
M. D. B. Burt ◽  
I. M. Sandeman

Light and electron microscopy were used to describe the functional morphology of Bothrimonus sturionis in detail. In particular, the musculature, nervous system, osmoregulatory system, and tegument are dealt with, and the findings compared with those of other workers. The musculature of the scolex consists of several interrelated systems, the structure of each being discussed in relation to its function. Associated with the regular nervous system, considered typical of cestodes, is an extensive system of giant nerve fibers. The osmoregulatory system is unusual in that there are lateral "excretory" pores in many proglottides which open directly to the exterior of the worm. The microtriches of the tegument are long, like those of other primitive cestodes, and are covered by a noncellular sheath while the worm is in its gammarid host. The sheath is lost when the worm becomes established in its fish host; the nature and function of the sheath are discussed.


1990 ◽  
Vol 259 (4) ◽  
pp. G564-G570 ◽  
Author(s):  
S. Arvidsson ◽  
K. Carter ◽  
A. Yanaka ◽  
S. Ito ◽  
W. Silen

The effects of intracellular acidosis induced by acidification of the basolateral (nutrient) perfusate on the structure and function of the oxynticopeptic cell were studied in in vitro frog gastric mucosa. Changing the pH of the unbuffered nutrient perfusate (UNB) from 7.2 to 3.5 acidified the oxynticopeptic cell with no change in potential difference (PD) or resistance (R). Intracellular pH (pHi), PD, and R were 7.05 +/- 0.01, 16 +/- 1 mV, 165 +/- 7 omega.cm2 before and 6.44 +/- 0.01, 16 +/- 2 mV, 170 +/- 9 omega.cm2 after nutrient acidification. Acid secretion (H+) increased from 0.86 +/- 0.07 to 1.88 +/- 0.18 mu eq.cm-2.h-1. Addition of forskolin to tissues perfused with nutrient pH (pHn) 3.5 decreased PD to 2 +/- 2 mV and further increased H+ to 3.07 +/- 0.19 mu eq.cm-2.h-1. By light and electron microscopy oxynticopeptic cells perfused with UNB, pHn 3.5, appeared normal. Oxynticopeptic cells in tissues pretreated with omeprazole and then exposed to UNB, pHn 3.5, had extensive morphological damage. On increasing the pH of the nutrient perfusate from 3.5 to 7.2 there was prompt recovery of pHi in untreated and forskolin-stimulated mucosae (pHi 6.87 +/- 0.06 and 6.85 +/- 0.04) but no recovery of pHi in tissues pretreated with omeprazole or cimetidine (pHi 6.26 +/- 0.04 and 6.44 +/- 0.06, n = 6, 30 min after reexposure to UNB, pHn 7.2). We conclude that in a secreting mucosa intracellular acidification of the oxynticopeptic cell to pHi 6.4 is associated with normal morphology, PD, R, and increased H+, and that intracellular acidosis is not de facto deleterious.


1990 ◽  
Vol 68 (7) ◽  
pp. 1454-1467 ◽  
Author(s):  
K. M. Fry ◽  
S. B. McIver

Light and electron microscopy were used to observe development of the lateral palatal brush in Aedes aegypti (L.) larvae. Development was sampled at 4-h intervals from second- to third-instar ecdyses. Immediately after second-instar ecdysis, the epidermis apolyses from newly deposited cuticle in the lateral palatal pennicular area to form an extensive extracellular cavity into which the fourth-instar lateral palatal brush filaments grow as cytoplasmic extensions. On reaching their final length, the filaments deposit cuticulin, inner epicuticle, and procuticle sequentially on their outer surfaces. The lateral palatal crossbars, on which the lateral palatal brush filaments insert, form after filament development is complete. At the beginning of development, the organelles involved in plasma membrane and cuticle production are located at the base and middle of the cells. As the filament rudiments grow, most rough endoplasmic reticulum, mitochondria, and Golgi apparatus move to the apex of the epidermal cells and into the filament rudiments. After formation of the lateral palatal brush filaments and lateral palatal crossbars, extensive organelle breakdown occurs. Lateral palatal brush formation is unusual in that no digestion and resorption of old endocuticle occurs prior to deposition of new cuticle. No mucopolysaccharide secretion by the lateral palatal brush epidermis was observed, nor were muscle fibres observed to attach to the lateral palatal crossbars, as has been suggested by other workers.


1974 ◽  
Vol 61 (2) ◽  
pp. 427-439 ◽  
Author(s):  
Itzhak Binderman ◽  
Dan Duksin ◽  
Arieh Harell ◽  
Ephraim Katzir (Katchalski) ◽  
Leo Sachs

A system is described for the formation of bone tissue in culture from isolated rat bone cells. The isolated bone cells were obtained from embryonic rat calvarium and periosteum or from traumatized, lifted periosteum of young rats. The cells were cultured for a period of up to 8 wk, during which time the morphological, biochemical, and functional properties of the cultures were studied. Formation of bone tissue by these isolated bone cells was shown, in that the cells demonstrated osteoblastic morphology in light and electron microscopy, the collagen formed was similar to bone collagen, there was mineralization specific for bone, and the cells reacted to the hormone calcitonin by increased calcium ion uptake. Calcification of the fine structure of the cells and the matrix is described. Three stages in the calcification process were observed by electron microscopy. It is concluded that these bone cells growing in vitro are able to function in a way similar to such cells in vivo. This tissue culture system starting from isolated bone cells is therefore suitable for studies on the structure and function of bone.


1991 ◽  
Vol 2 (12) ◽  
pp. 1097-1113 ◽  
Author(s):  
J M Lewis ◽  
M J Woolkalis ◽  
G L Gerton ◽  
R M Smith ◽  
L Jarett ◽  
...  

The subcellular distribution of the alpha subunit(s) of Gi has an obvious bearing on the ability of this protein to interact with receptors and targets and on its potential to serve in still unexplored capacities. In this study, we have examined the distribution of Gi alpha by means of light and electron microscopy. The cells employed were mouse 3T3 fibroblasts, normal rat kidney fibroblasts, rat C6 glioma cells, human umbilical vein endothelial cells, and human 293 kidney fibroblasts. By indirect immunofluorescence, two patterns of Gi alpha were evident. The more prominent was that associated with phase-dense, cytoplasmic structures exhibiting a tubule-like morphology. A similar distribution was noted for mitochondria, indicating attachment to a subset of microtubules. The second pattern appeared as a diffuse, particulate fluorescence associated with the plasma membrane. By immunogold labeling and electron microscopy, two populations of Gi alpha were again evident. In this instance, labeling of the plasma membrane was the more prominent. Gold particles were most often evenly distributed along the plasma membrane and were concentrated along microspikes. The second, less abundant population of Gi alpha represented the subunit (or fragments) within lysosomes. Specificity in immunolabeling was confirmed in all instances by immunotransfer blotting, the use of antibodies differing in specificities for epitopes within Gi alpha, the absence of labeling with preimmune sera, and the decrease in labeling after preincubation of antisera with appropriate peptides. These results support the proposal that several populations of Gi alpha exist: those evident within the cytoplasm by immunofluorescence, those present at the plasma membrane, and those evident within lysosomes by immunogold labeling.


Sign in / Sign up

Export Citation Format

Share Document