scholarly journals The osmium tetroxide-p-phenylenediamine procedure reveals the chromatid cores and kinetochores of meiotic chromosomes by light and electron microscopy.

1996 ◽  
Vol 44 (11) ◽  
pp. 1279-1288 ◽  
Author(s):  
C Antonio ◽  
J M González-García ◽  
J Page ◽  
J A Suja ◽  
J C Stockert ◽  
...  

We analyzed first-metaphase meiotic chromosomes of the grasshopper Chorthippus jucundus by two different methods, i.e., a silver impregnation technique and the osmium tetroxide-p-phenylenediamine (Os-PPD) procedure. The former was applied on squashed testes previously fixed in ethanol-acetic acid, whereas for Os-PPD the material was not subjected to any previous extraction treatment but was fixed in OsO4, treated with PPD, and embedded in Epon 812. Both techniques revealed chromatid cores and kinetochores regardless of the processing of the material (squashed or sectioned). Unstained Os-PPD sections were analyzed by light microscopy and transmission electron microscopy (TEM). The Os-PPD technique provided a high contrast of chromatid cores and kinetochores in relation to the chromatin, which revealed a low electron density. To determine the Os-PPD reaction mechanism, the PAS procedure, as well as scanning electron microscopy (SEM) backscattering and SEM X-ray microanalysis, was performed on sections. By use of the Os-PPD-PAS procedure, glycol groups formed by oxidation of osmium bound to aromatic substrates were detected in chromatid cores and kinetochores by brightfield and fluorescence microscopy. A high Z contrast was detected in these structures by backscattered electron imaging. SEM X-ray microanalysis showed osmium and phosphorus to be the main elements present on the chromatid cores. Taking into account the known reactivity of OsO4 and the present results, the possible participation of nucleic acids as well as proteins in the Os-PPD reaction mechanism and in the composition of chromatid cores and kinetochores is discussed.

Author(s):  
A. J. Tousimis

Scleral plaques of the human eye are small, oval, grayish lesions located 1 to 2 mm in front of the insertion of the lateral rectus muscle. They are common in individuals over 50. Roper's review attributes them to "dehydration, sclerosis, and hyalinization of the connective tissue." Calcium carbonate was reported by Klein-Moncrieff and calcium sulfate and apatite mixed with gypsum by Cogan et al. In the present study light and electron microscopy along with electron diffraction and electron probe x-ray microanalysis (both wave length and energy dispersive) were used to examine the morphology and elemental composition of 12 eyes with the majority of them with unilateral and some bilateral plaques.


2013 ◽  
Vol 19 (1) ◽  
pp. 22-29 ◽  
Author(s):  
David B. Carlson ◽  
Jeff Gelb ◽  
Vadim Palshin ◽  
James E. Evans

AbstractHere we present a novel laboratory-based cryogenic soft X-ray microscope for whole cell tomography of frozen hydrated samples. We demonstrate the capabilities of this compact cryogenic microscope by visualizing internal subcellular structures of Saccharomyces cerevisiae cells. The microscope is shown to achieve better than 50 nm half-pitch spatial resolution with a Siemens star test sample. For whole biological cells, the microscope can image specimens up to 5 μm thick. Structures as small as 90 nm can be detected in tomographic reconstructions following a low cumulative radiation dose of only 7.2 MGy. Furthermore, the design of the specimen chamber utilizes a standard sample support that permits multimodal correlative imaging of the exact same unstained yeast cell via cryo-fluorescence light microscopy, cryo-soft X-ray microscopy, and cryo-transmission electron microscopy. This completely laboratory-based cryogenic soft X-ray microscope will enable greater access to three-dimensional ultrastructure determination of biological whole cells without chemical fixation or physical sectioning.


1996 ◽  
Vol 74 (5) ◽  
pp. 809-815 ◽  
Author(s):  
G. K. Walker ◽  
C. A. Edwards ◽  
M. G. Black

Adult zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels were induced to release large quantities of live spermatozoa by the administration of 5-hydroxytryptamine (serotonin). Sperm were photographed alive using phase-contrast microscopy and were fixed subsequently with glutaraldehyde followed by osmium tetroxide for eventual examination by transmission or scanning electron microscopy. The sperm of both genera are of the ect-aquasperm type. Their overall dimensions and shape allow for easy discrimination at the light and scanning electron microscopy level. Transmission electron microscopy of the cells reveals a barrel-shaped nucleus in zebra mussel sperm and an elongated nucleus in quagga mussel sperm. In both species, an acrosome is cradled in a nuclear fossa. The ultrastructure of the acrosome and axial body, however, is distinctive for each species. The structures of the midpiece are shown, including a unique mitochondrial "skirt" that includes densely packed parallel cristae and extends in a narrow sheet from the mitochondria.


2012 ◽  
Vol 184-185 ◽  
pp. 1034-1037
Author(s):  
Ke Gao Liu ◽  
Zhong Quan Ma ◽  
Jian Hua Wang

The SnO2 powders have been prepared by hydrothermal method at temperatures of 150, 180 °C from SnCl2•2H2O, NaOH and sulfur (S) powder. The phases and morphology of the products were analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) respectively. Experimental results show that, no impurity phases were found except SnO2 and no regular geometric shapes were observed in this product powders. The reaction mechanism is that SnO2 may be obtained by decomposition of Na2SnO2 formed from Sn(OH)2+NaOH.


2001 ◽  
Vol 16 (8) ◽  
pp. 2350-2356 ◽  
Author(s):  
Anatolii G Belous ◽  
Oleg V. Ovchar ◽  
Matjaz Valant ◽  
Danilo Suvorov

A solid-state reaction mechanism for the formation of Ba6−xLn8+2x /3Ti18O54 (Ln = Nd, Sm) solid solutions has been studied using x-ray powder diffraction, thermal analyses, and transmission electron microscopy (TEM). During the interaction of the starting reagents, Ln2Ti2O7, BaTi4O9, and BaTiO3 are formed. In the next sequence, these three phases react together to form a high-x end member of the Ba6−xLn8+2x /3Ti18O54 homogeneity region (Ba3.9Nd9.4Ti18O54 and Ba3.9Sm9.4Ti18O54). Subsequently, the reaction of Ba3.9Nd9.4Ti18O54 and Ba3.9Sm9.4Ti18O54 with the residual BaTiO3 takes place. TEM investigations revealed that compositional inhomogeneities and structural defects existed in the Ba4Sm9.33Ti18O54 sample heated at 1370 °C for 1 h. Sintering times, prolonged to ≥3 h, eliminated the structural defects and increased the homogeneity of the sample.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
William P. Wergin ◽  
P. F. Bell ◽  
Rufus L. Chaney

In dicotyledons, Fe3+ must be reduced to Fe2+ before uptake and transport of this essential macronutrient can occur. Ambler et al demonstrated that reduction along the root could be observed by the formation of a stain, Prussian blue (PB), Fe4 [Fe(CN)6]3 n H2O (where n = 14-16). This stain, which is an insoluble precipitate, forms at the reduction site when the nutrient solution contains Fe3+ and ferricyanide. In 1972, Chaney et al proposed a model which suggested that the Fe3+ reduction site occurred outside the cell membrane; however, no physical evidence to support the model was presented at that time. A more recent study using the PB stain indicates that rapid reduction of Fe3+ occurs in a region of the root containing young root hairs. Furthermore the most pronounced activity occurs in plants that are deficient in Fe. To more precisely localize the site of Fe3+ reduction, scanning electron microscopy (SEM), x-ray analysis, and transmission electron microscopy (TEM) were utilized to examine the distribution of the PB precipitate that was induced to form in roots.


Sign in / Sign up

Export Citation Format

Share Document