Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing

2014 ◽  
Vol 18 (sup5) ◽  
pp. S5-12-S5-16 ◽  
Author(s):  
W. Z. Wu ◽  
P. Geng ◽  
J. Zhao ◽  
Y. Zhang ◽  
D. W. Rosen ◽  
...  
2021 ◽  
Vol 198 ◽  
pp. 109333
Author(s):  
Qiushi Li ◽  
Wei Zhao ◽  
Bingjie Niu ◽  
Yiliang Wang ◽  
Xinhui Wu ◽  
...  

2019 ◽  
Vol 114 ◽  
pp. 234-248 ◽  
Author(s):  
Sunpreet Singh ◽  
Chander Prakash ◽  
Seeram Ramakrishna

2020 ◽  
Vol 869 ◽  
pp. 466-473
Author(s):  
Kamila T. Shakhmurzova ◽  
Zhanna I. Kurdanova ◽  
Artur E. Baykaziev ◽  
Azamat Zhansitov ◽  
Svetlana Khashirova

The article is a literature review on 3D-printing of crystalline polyether ether ketone by the methods of layer-by-layer deposition of molten polymer filament (FDM) and selective laser sintering (SLS). The influence of printing technological modes and material properties (fluidity, morphology, etc.) on the quality of the products is considered.


2019 ◽  
Vol 28 ◽  
pp. 430-438 ◽  
Author(s):  
Chang-Uk Lee ◽  
Johanna Vandenbrande ◽  
Adam E. Goetz ◽  
Mark A. Ganter ◽  
Duane W. Storti ◽  
...  

2021 ◽  
Vol 7 ◽  
Author(s):  
Rosa Mendaza-DeCal ◽  
Salvador Peso-Fernandez ◽  
Jesus Rodriguez-Quiros

Total limb amputation is quite common in small animals, although most of the indicated pathologies do not need such a restrictive procedure. Exo-endoprosthesis is a suggested alternative for the enhancement of the biomechanical situation of these patients. 3D printing of the internal part of exo-endoprostheses in polyether ether ketone (PEEK) is evaluated. Two different shapes of this internal part—one for radius’ and the other for cylindrical medullary cavities—were assessed. Proper PEEK temperature settings for 3D printing, the internal part of exo-endoprostheses, by fused filament fabrication (FFF) were obtained. Printing trials were carried out for different dimensions and printing orientation of these parts to achieve the best bone anchorage and thread strength outcomes. Pull-off strength tests for different surfaces of the internal part were performed with a best outcome for positive surfaces. All printed internal parts were inserted in canine tibiae and radii for an ex vivo assessment of bone anchorage and thread strength parameters. The best printing results were obtained at 410 and 130°C of the nozzle and bed temperatures, respectively. Also, a positive correlation was observed between the printing code, quality, and take-off time, while inverse correlation was shown between the take-off and the printing code, or quality, just like the print-bed temperature and the printing code. The positive surfaces had the best pull-off strength outcomes. Excellent bone anchorage and thread strength outcomes were obtained for one variant of each internal part shape. Designed devices had shown good threaded rod’s fitting inside the PEEK plug and perfect bone anchorage of the PEEK plug for tibiae and radii. In addition, iteration of manufacturing PEEK small devices by FFF technology has been shown due to small standard deviation of most variants.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 421
Author(s):  
Jorge Oevermann ◽  
Peter Weber ◽  
Steffen H. Tretbar

The aim of this work was to extend conventional medical implants by the possibility of communication between them. For reasons of data security and transmitting distances, this communication should be realized using ultrasound, which is generated and detected by capacitive micromachined ultrasonic transducers (CMUTs). These offer the advantage of an inherent high bandwidth and a high integration capability. To protect the surrounding tissue, it has to be encapsulated. In contrast to previous results of other research groups dealing with the encapsulation of CMUTs, the goal here is to integrate the CMUT into the housing of a medical implant. In this work, CMUTs were designed and fabricated for a center frequency of 2 MHz in water and experimentally tested on their characteristics for operation behind layers of Polyether ether ketone (PEEK) and titanium, two typical materials for the housings of medical implants. It could be shown that with silicone as a coupling layer it is possible to operate a CMUT behind the housing of an implant. Although it changes the characteristics of the CMUT, the setup is found to be well suited for communication between two transducers over a distance of at least 8 cm.


Sign in / Sign up

Export Citation Format

Share Document