Grain boundary characterisation in superplastic deformation of Al-Li alloy using electron backscatter diffraction

2004 ◽  
Vol 20 (2) ◽  
pp. 173-180 ◽  
Author(s):  
Y. Xun ◽  
M. J. Tan ◽  
T. G. Nieh
2000 ◽  
Vol 6 (S2) ◽  
pp. 940-941
Author(s):  
A.J. Schwartz ◽  
M. Kumar ◽  
P.J. Bedrossian ◽  
W.E. King

Grain boundary network engineering is an emerging field that encompasses the concept that modifications to conventional thermomechanical processing can result in improved properties through the disruption of the random grain boundary network. Various researchers have reported a correlation between the grain boundary character distribution (defined as the fractions of “special” and “random” grain boundaries) and dramatic improvements in properties such as corrosion and stress corrosion cracking, creep, etc. While much early work in the field emphasized property improvements, the opportunity now exists to elucidate the underlying materials science of grain boundary network engineering. Recent investigations at LLNL have coupled automated electron backscatter diffraction (EBSD) with transmission electron microscopy (TEM)5 and atomic force microscopy (AFM) to elucidate these fundamental mechanisms.An example of the coupling of TEM and EBSD is given in Figures 1-3. The EBSD image in Figure 1 reveals “segmentation” of boundaries from special to random and random to special and low angle grain boundaries in some grains, but not others, resulting from the 15% compression of an Inconel 600 polycrystal.


2010 ◽  
Vol 160 ◽  
pp. 39-46 ◽  
Author(s):  
Valerie Randle

The technique of electron backscatter diffraction (EBSD) is ideal for the characterisation of grain boundary networks in polycrystalline materials. In recent years the experimental methodology has evolved to meet the needs of the research community. For example, the capabilities of EBSD have been instrumental in driving forward the topic of ‘grain boundary engineering’. In this paper the current capabilities of EBSD for grain boundary characterisation will be reviewed and illustrated by examples. Topics are measurement strategies based on misorientation statistics, determination of grain boundary plane distributions and grain boundary network characteristics.


2013 ◽  
Vol 46 (2) ◽  
pp. 483-492 ◽  
Author(s):  
Mariusz Jedrychowski ◽  
Jacek Tarasiuk ◽  
Brigitte Bacroix ◽  
Sebastian Wronski

The main aim of the present work is to study the relation between microstructural features – such as local misorientations, grain orientation gradients and grain boundary structures – and thermomechanical treatment of hexagonal zirconium (Zr702α). Electron backscatter diffraction (EBSD) topological maps are used to analyze the aforementioned material parameters at the early stages of plastic deformation imposed by channel-die compression, as well as at a partial recrystallization state achieved by brief annealing. The evolution of local misorientations and orientation gradients is investigated using the so-called kernel average misorientation (KAM) and grain orientation spread (GOS) statistics implemented in the TSLOIMdata analysis software [TexSEM Laboratories (2004), Draper, UT, USA]. In the case of grain boundaries (GBs) a new method of analysis is presented. As an addition to the classical line segments method, where the grain boundary is represented by line segments that separate particular pairs of neighboring points, an approach that focuses on grain boundary areas is proposed. These areas are represented by sets of EBSD points, which are specially selected from a modified calculation procedure for the KAM. Different evolution mechanisms of intragranular boundaries, low-angle grain boundaries and high-angle grain boundaries are observed depending on the compression direction. The observed differences are consistent with the results obtained from KAM and GOS analysis. It is also concluded that the proposed method of grain boundary characterization seems to be promising, as it provides new and interesting analysis tools such as textures, absolute fractions and other EBSD statistics of the GB areas. This description may be more compatible with a real deformed microstructure, especially for grain boundaries with very small misorientation, which are indeed clustered areas of lattice defect accumulation.


2011 ◽  
Vol 172-174 ◽  
pp. 378-383
Author(s):  
Guo Hong Zhang ◽  
Tomoaki Takeuchi ◽  
Masato Enomoto ◽  
Yoshitaka Adachi

The nucleation of bcc ferrite precipitates at austenite grain corners in a Co-15Fe alloy was studied by serial sectioning coupled with electron backscatter diffraction (EBSD) analysis. Grain corners were identified by recombination of triple points and triangular annihilation, whereas quite a few precipitates were surrounded by more than four matrix grains when twins were counted as individual grains. More than 40% of corners composed all of high angle grain boundaries were vacant at an undercooling of ~60°C from the g/(a+g) phase boundary. All the precipitates had K-S or N-W orientation relationship with at least one grain and a larger proportion of them had the OR with two and three grains. For half of vacant corners a hypothetical precipitate could have the OR with more than one grain. It is likely that not only the misorientations among the matrix grains, but also the orientations of the grain boundary planes have a major influence on nucleation potency even at grain corners.


2015 ◽  
Vol 21 (4) ◽  
pp. 927-935 ◽  
Author(s):  
Matthew M. Nowell ◽  
Michael A. Scarpulla ◽  
Naba R. Paudel ◽  
Kristopher A. Wieland ◽  
Alvin D. Compaan ◽  
...  

AbstractThe performance of polycrystalline CdTe photovoltaic thin films is expected to depend on the grain boundary density and corresponding grain size of the film microstructure. However, the electrical performance of grain boundaries within these films is not well understood, and can be beneficial, harmful, or neutral in terms of film performance. Electron backscatter diffraction has been used to characterize the grain size, grain boundary structure, and crystallographic texture of sputtered CdTe at varying deposition pressures before and after CdCl2 treatment in order to correlate performance with microstructure. Weak fiber textures were observed in the as-deposited films, with (111) textures present at lower deposition pressures and (110) textures observed at higher deposition pressures. The CdCl2-treated samples exhibited significant grain recrystallization with a high fraction of twin boundaries. Good correlation of solar cell efficiency was observed with twin-corrected grain size while poor correlation was found if the twin boundaries were considered as grain boundaries in the grain size determination. This implies that the twin boundaries are neutral with respect to recombination and carrier transport.


2000 ◽  
Vol 652 ◽  
Author(s):  
Jeffrey K. Farrer ◽  
N. Ravishankar ◽  
Joseph R. Michael ◽  
C. Barry Carter

ABSTRACTThe sintering process of ceramics involves grain-boundary migration (GBM) that is accompanied by mass transport across an interface. In this study, electron backscatter diffraction (EBSD) has been used to examine grain-boundary migration in alumina bicrystals with liquid films at the interface. EBSD patterns, taken near the sintered interface, have been used to study the effects of crystallography on GBM and to study the orientation relationships within the migrated regions of the crystal. Results indicate that the direction of migration is not always the same as that predicted by the current theories on GBM. It was also found that there may be small-angle misorientations in the migrated regions.


2007 ◽  
Vol 263 ◽  
pp. 207-212 ◽  
Author(s):  
Vĕra Rothová ◽  
Jiří Buršík ◽  
Milan Svoboda ◽  
Jiří Čermák

Grain boundary self-diffusion in both the cast and the cold-rolled Puratronic 4N5 nickel was studied in the temperature range from 600 °C to 1000 °C. The experiments were carried out with the samples pre-annealed at 1100 °C in comparison to the samples pre-annealed at intended individual diffusion temperatures. The relative grain orientation was analyzed on the same samples by means of electron backscatter diffraction (EBSD) and grain boundaries (GBs) were characterized in terms of the coincidence site lattice (CSL) model. Considering the non-linear Arrhenius temperature dependencies obtained for most specimens by using conventional method of profile evaluation in the B-type kinetics and the appearance of two high-diffusivity paths in diffusion profiles measured, a more suitable BB-type and AB-type diffusion models were applied for data evaluation.


Sign in / Sign up

Export Citation Format

Share Document