Three-dimensional investigation of grain boundary–twin interactions in a Mg AZ31 alloy by electron backscatter diffraction and continuum modeling

2013 ◽  
Vol 61 (20) ◽  
pp. 7679-7692 ◽  
Author(s):  
A. Fernández ◽  
A. Jérusalem ◽  
I. Gutiérrez-Urrutia ◽  
M.T. Pérez-Prado
2013 ◽  
Vol 46 (4) ◽  
pp. 1145-1150 ◽  
Author(s):  
Melanie Syha ◽  
Andreas Trenkle ◽  
Barbara Lödermann ◽  
Andreas Graff ◽  
Wolfgang Ludwig ◽  
...  

Microstructure reconstructions resulting from diffraction contrast tomography data of polycrystalline bulk strontium titanate were reinvestigated by means of electron backscatter diffraction (EBSD) characterization. Corresponding two-dimensional grain maps from the two characterization methods were aligned and compared, focusing on the spatial resolution at the internal interfaces. The compared grain boundary networks show a remarkably good agreement both morphologically and in crystallographic orientation. Deviations are critically assessed and discussed in the context of diffraction data reconstruction and EBSD data collection techniques.


2019 ◽  
Vol 1 (1) ◽  
pp. 11
Author(s):  
Yu.V. Yudin ◽  
A.A. Kuklina ◽  
M.V. Maisuradze ◽  
M.S. Karabanalov

The electron backscatter diffraction method (EBSD) is widely used to studycrystallographic orientational relationships of the steel microstructure constituentsincluding bainite. Nevertheless the fine structure of bainite (subunits, plates) is notinvestigated by this method. In this paper we propose a technique for visualizing ofthe structure of a bainitic steel near-surface layer using the values of Euler anglesobtained by EBSD method. A three-dimensional picture of the bainite fine structure ofthe HY-TUF steel obtained by the proposed technique is in


2000 ◽  
Vol 6 (S2) ◽  
pp. 940-941
Author(s):  
A.J. Schwartz ◽  
M. Kumar ◽  
P.J. Bedrossian ◽  
W.E. King

Grain boundary network engineering is an emerging field that encompasses the concept that modifications to conventional thermomechanical processing can result in improved properties through the disruption of the random grain boundary network. Various researchers have reported a correlation between the grain boundary character distribution (defined as the fractions of “special” and “random” grain boundaries) and dramatic improvements in properties such as corrosion and stress corrosion cracking, creep, etc. While much early work in the field emphasized property improvements, the opportunity now exists to elucidate the underlying materials science of grain boundary network engineering. Recent investigations at LLNL have coupled automated electron backscatter diffraction (EBSD) with transmission electron microscopy (TEM)5 and atomic force microscopy (AFM) to elucidate these fundamental mechanisms.An example of the coupling of TEM and EBSD is given in Figures 1-3. The EBSD image in Figure 1 reveals “segmentation” of boundaries from special to random and random to special and low angle grain boundaries in some grains, but not others, resulting from the 15% compression of an Inconel 600 polycrystal.


2009 ◽  
Vol 42 (2) ◽  
pp. 234-241 ◽  
Author(s):  
David J. Dingley ◽  
Stuart I. Wright

Electron backscatter diffraction (EBSD) is a scanning electron microscope-based technique principally used for the determination and mapping of crystal orientation. This work describes an adaptation of the EBSD technique into a potential tool for crystal phase determination. The process can be distilled into three steps: (1) extracting a triclinic cell from a single EBSD pattern, (2) identifying the crystal symmetry from an examination of the triclinic cell, and (3) determining the lattice parameters. The triclinic cell is determined by finding the bands passing through two zone axes in the pattern including a band connecting the two. A three-dimensional triclinic unit cell is constructed based on the identified bands. The EBSD pattern is indexed in terms of the triclinic cell thus formed and the crystal orientation calculated. The pattern indexing results in independent multiple orientations due to the symmetry the crystal actually possesses. By examining the relationships between these multiple orientations, the crystal system is established. By comparing simulated Kikuchi bands with the pattern the lattice parameters can be determined. Details of the method are given for a test case of EBSD patterns obtained from the hexagonal phase of titanium.


2010 ◽  
Vol 160 ◽  
pp. 39-46 ◽  
Author(s):  
Valerie Randle

The technique of electron backscatter diffraction (EBSD) is ideal for the characterisation of grain boundary networks in polycrystalline materials. In recent years the experimental methodology has evolved to meet the needs of the research community. For example, the capabilities of EBSD have been instrumental in driving forward the topic of ‘grain boundary engineering’. In this paper the current capabilities of EBSD for grain boundary characterisation will be reviewed and illustrated by examples. Topics are measurement strategies based on misorientation statistics, determination of grain boundary plane distributions and grain boundary network characteristics.


2013 ◽  
Vol 46 (2) ◽  
pp. 483-492 ◽  
Author(s):  
Mariusz Jedrychowski ◽  
Jacek Tarasiuk ◽  
Brigitte Bacroix ◽  
Sebastian Wronski

The main aim of the present work is to study the relation between microstructural features – such as local misorientations, grain orientation gradients and grain boundary structures – and thermomechanical treatment of hexagonal zirconium (Zr702α). Electron backscatter diffraction (EBSD) topological maps are used to analyze the aforementioned material parameters at the early stages of plastic deformation imposed by channel-die compression, as well as at a partial recrystallization state achieved by brief annealing. The evolution of local misorientations and orientation gradients is investigated using the so-called kernel average misorientation (KAM) and grain orientation spread (GOS) statistics implemented in the TSLOIMdata analysis software [TexSEM Laboratories (2004), Draper, UT, USA]. In the case of grain boundaries (GBs) a new method of analysis is presented. As an addition to the classical line segments method, where the grain boundary is represented by line segments that separate particular pairs of neighboring points, an approach that focuses on grain boundary areas is proposed. These areas are represented by sets of EBSD points, which are specially selected from a modified calculation procedure for the KAM. Different evolution mechanisms of intragranular boundaries, low-angle grain boundaries and high-angle grain boundaries are observed depending on the compression direction. The observed differences are consistent with the results obtained from KAM and GOS analysis. It is also concluded that the proposed method of grain boundary characterization seems to be promising, as it provides new and interesting analysis tools such as textures, absolute fractions and other EBSD statistics of the GB areas. This description may be more compatible with a real deformed microstructure, especially for grain boundaries with very small misorientation, which are indeed clustered areas of lattice defect accumulation.


Sign in / Sign up

Export Citation Format

Share Document