Effects of processing parameters on rapid manufacturing 90W–7Ni–3Fe parts via selective laser melting

2010 ◽  
Vol 53 (4) ◽  
pp. 310-317 ◽  
Author(s):  
R. D. Li ◽  
J. H. Liu ◽  
Y. S. Shi ◽  
L. Zhang ◽  
M. Z. Du
Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 528
Author(s):  
Chunyue Yin ◽  
Zhehao Lu ◽  
Xianshun Wei ◽  
Biao Yan ◽  
Pengfei Yan

The objective of the study is to investigate the corresponding microstructure and mechanical properties, especially bending strength, of the hypereutectic Al-Si alloy processed by selective laser melting (SLM). Almost dense Al-22Si-0.2Fe-0.1Cu-Re alloy is fabricated from a novel type of powder materials with optimized processing parameters. Phase analysis of such Al-22Si-0.2Fe-0.1Cu-Re alloy shows that the solubility of Si in Al matrix increases significantly. The fine microstructure can be observed, divided into three zones: fine zones, coarse zones, and heat-affected zones (HAZs). Fine zones are directly generated from the liquid phase with the characteristic of petaloid structures and bulk Al-Si eutectic. Due to the fine microstructure induced by the rapid cooling rate of SLM, the primary silicon presents a minimum average size of ~0.5 μm in fine zones, significantly smaller than that in the conventional produced hypereutectic samples. Moreover, the maximum value of Vickers hardness reaches ~170 HV0.2, and bending strength increases to 687.70 MPa for the as-built Al-22Si-0.2Fe-0.1Cu-Re alloys parts, which is much higher than that of cast counterparts. The formation mechanism of this fine microstructure and the enhancement reasons of bending strength are also discussed.


2016 ◽  
Vol 704 ◽  
pp. 225-234 ◽  
Author(s):  
Peter Franz ◽  
Aamir Mukhtar ◽  
Warwick Downing ◽  
Graeme Smith ◽  
Ben Jackson

Gas atomized Ti-6Al-4V (Ti64) alloy powder was used to prepare distinct designed geometries with different properties by selective laser melting (SLM). Several heat treatments were investigated to find suitable processing parameters to strengthen (specially to harden) these parts for different applications. The results showed significant differences between tabulated results for heat treated billet Ti64 and SLM produced Ti64 parts, while certain mechanical properties of SLM Ti64 parts could be improved by different heat treatments using different processing parameters. Most heat treatments performed followed the trends of a reduction in tensile strength while improving ductility compared with untreated SLM Ti64 parts.Gas nitriding [GN] (diffusion-based thermo-chemical treatment) has been combined with a selected heat treatment for interstitial hardening. Heat treatment was performed below β-transus temperature using minimum flow of nitrogen gas with a controlled low pressure. The surface of the SLM produced Ti64 parts after gas nitriding showed TiN and Ti2N phases (“compound layer”, XRD analysis) and α (N) – Ti diffusion zones as well as high values of micro-hardness as compared to untreated SLM produced Ti64 parts. The microhardness profiles on cross section of the gas nitrided SLM produced samples gave information about the i) microhardness behaviour of the material, and ii) thickness of the nitrided layer, which was investigated using energy dispersive spectroscopy (EDS) and x-ray elemental analysis. Tensile properties of the gas nitrided Ti64 bars produced by SLM under different conditions were also reported.


2020 ◽  
Vol 20 (11) ◽  
pp. 6807-6814
Author(s):  
Jungsub Lee ◽  
Minshik Lee ◽  
Im Doo Jung ◽  
Jungho Choe ◽  
Ji-Hun Yu ◽  
...  

The correlation between microstructure and tensile properties of selective laser melting (SLM) processed STS 316L and Inconel 718 were investigated at various heights (top, middle and bottom) and planes (YZ, ZX and XY). Columnar grains and dendrites were formed by directional growth during solidification. The average melt pool width and depth, and scan track width were similar in both specimens due to fixed processing parameters. SLM Inconel 718 has moderate tensile strength (1165 MPa) and tensile elongation (11.5%), whereas SLM STS 316L has outstanding tensile strength (656 MPa) and tensile elongation (75%) compared to other SLM processed STS 316L. Fine columnar diameter (0.5 μm) and dense microstructures (porosity: 0.35%) in SLM STS 316L promoted the enhancement of tensile elongation by suitable processing condition. Fractographic analysis suggested that the lack of fusion pore with unmelted powder should be avoided to increase tensile properties by controlling processing parameters.


2020 ◽  
Vol 36 ◽  
pp. 101496 ◽  
Author(s):  
Hossein Ghasemi-Tabasi ◽  
Jamasp Jhabvala ◽  
Eric Boillat ◽  
Toni Ivas ◽  
Rita Drissi-Daoudi ◽  
...  

2019 ◽  
Vol 30 ◽  
pp. 100874 ◽  
Author(s):  
Inmaculada Lopez-Galilea ◽  
Benjamin Ruttert ◽  
Junyang He ◽  
Thomas Hammerschmidt ◽  
Ralf Drautz ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4564 ◽  
Author(s):  
Zhi Wang ◽  
Raghunandan Ummethala ◽  
Neera Singh ◽  
Shengyang Tang ◽  
Challapalli Suryanarayana ◽  
...  

The laser-based powder bed fusion (LBPF) process or commonly known as selective laser melting (SLM) has made significant progress since its inception. Initially, conventional materials like 316L, Ti6Al4V, and IN-718 were fabricated using the SLM process. However, it was inevitable to explore the possible fabrication of the second most popular structural material after Fe-based alloys/steel, the Al-based alloys by SLM. Al-based alloys exhibit some inherent difficulties due to the following factors: the presence of surface oxide layer, solidification cracking during melt cooling, high reflectivity from the surface, high thermal conductivity of the metal, poor flowability of the powder, low melting temperature, etc. Researchers have overcome these difficulties to successfully fabricate the different Al-based alloys by SLM. However, there exists no review dealing with the fabrication of different Al-based alloys by SLM, their fabrication issues, microstructure, and their correlation with properties in detail. Hence, the present review attempts to introduce the SLM process followed by a detailed discussion about the processing parameters that form the core of the alloy development process. This is followed by the current research status on the processing of Al-based alloys and microstructure evaluation (including defects, internal stresses, etc.), which are dealt with on the basis of individual Al-based series. The mechanical properties of these alloys are discussed in detail followed by the other important properties like tribological properties, fatigue properties, etc. Lastly, an outlook is given at the end of this review.


Sign in / Sign up

Export Citation Format

Share Document