Seasonal changes in the mineral compositions of tropospheric dust in the industrial region of Upper Silesia, Poland

2003 ◽  
Vol 67 (6) ◽  
pp. 1231-1241 ◽  
Author(s):  
M. Jablonska ◽  
J. Janeczek ◽  
F. J. M. Rietmeijer

AbstractThe tropospheric dust loading in Upper Silesia (Poland) shows a steady, annually averaged supply of minerals from natural and anthropogenic sources, industrial dust emitters, domestic heating, transportation, but with superimposed seasonal changes for some dust types. Samples of airborne and deposited particles were collected at monthly intervals between 1996 and 2001 in several cities of Upper Silesia. Dust samples were examined by X-ray powder diffraction, analytical transmission electron microscopy, analytical scanning electron microscopy, and electron microprobe microanalysis. The most common dust included quartz, gypsum, coke, soot, hematite, magnetite, wüstite, bassanite, graphite and various K-, Fe- and Mg-bearing aluminosilicates, in order of decreasing abundance. Minor phases included α-iron, sulphur, sphalerite, halite, sylvite, hercynite, franklinite, baryte, dolomite, ankerite, apatite, olivine and feldspars. Quartz, and specific industrial minerals, e.g. spinels, sphalerite, olivine and iron, occurred throughout the year in almost constant abundances. The amounts of all other dust components show seasonal variations; gypsum, baryte and other sulphates are particularly abundant in winter. In general, minerals related to low-emission sources are abundant in the winter time, while both natural dusts and dust from high-emission sources are predominant during the summer.

2020 ◽  
Author(s):  
Kouji Adachi ◽  
Naga Oshima ◽  
Zhaoheng Gong ◽  
Suzane de Sá ◽  
Adam P. Bateman ◽  
...  

Abstract. The Amazon basin is important for understanding the global climate both because of its carbon cycle and as a laboratory for obtaining basic knowledge of the continental background atmosphere. Aerosol particles play an important role in the climate and weather, and knowledge of their compositions and mixing states is necessary to understand their influence on the climate. For this study, we collected aerosol particles from the Amazon basin during the Green Ocean Amazon (GoAmazon2014/5) campaign (February to March 2014) at the T3 site, which locates about 70 km from Manaus, and analyzed using transmission electron microscopy (TEM). TEM has better spatial resolution than other instruments, which enables us to analyse the occurrences of components that attach to or are embedded within other particles. Based on the TEM results of more than 10,000 particles from several transport events, this study shows the occurrences of individual particles including compositions, size distributions, number fractions, and possible sources of materials that mix with other particles. Aerosol particles during the wet season were from both natural sources such as the Amazon forest, Saharan desert, Atlantic Ocean, and African biomass burning and anthropogenic sources such as Manaus and local emissions. These particles mix together at an individual particle scale. The number fractions of mineral dust and sea-salt particles increased almost three-fold when long-range transport (LRT) from the African continent occurred. Nearly 20 % of mineral dust and primary biological aerosol particles attached sea salts on their surfaces. Sulfates were also internally mixed with sea-salt and mineral dust particles. The TEM element mapping images showed that several components with sizes of hundreds of nanometres from different sources commonly occur within individual LRT aerosol particles. We conclude that many aerosol particles from natural sources change their compositions by mixing during transport. The compositions and mixing states of these particles after emission result in changes in their hygroscopic and optical properties and should be considered when assessing their effects on climate.


2009 ◽  
Vol 633-634 ◽  
pp. 63-72 ◽  
Author(s):  
Y. B. Wang ◽  
M.L. Sui

This paper reviews our recent studies on the effect of twin boundary (TB) on the deformation behavior in Cu with nanoscale growth twins. In situ straining transmission electron microscopy investigations on TB migration, TBs and twin ends acting as dislocation emission sources, and the interactions between dislocations and TBs are highlighted. Results provide some useful understanding of why Cu with nanoscale twins leads to a combination of ultrahigh strength and high ductility.


2012 ◽  
Vol 12 (7) ◽  
pp. 17245-17293 ◽  
Author(s):  
G. Kos ◽  
A. Ryzhkov ◽  
A. Dastoor ◽  
J. Narayan ◽  
A. Steffen ◽  
...  

Abstract. Zhang et al. (2012a), in a recent report, compared model estimates and new observations of oxidised and particulate mercury species (Hg2+ and Hgp) in the Great Lakes region and found that the sum of Hg2+ and Hgp varied between a factor of 2 to 10 between measurements and model. They suggested too high emission inputs and too fast oxidative conversion of Hg0 to Hg2+ and Hgp, as possible causes. This study quantitatively explores in detail the uncertainties in measurements, in addition to the above concerns and speciation of mercury near emission sources in the model to better understand these discrepancies in the context of oxidized mercury, i.e. gaseous (Hg2+) and particulate (Hgp) mercury. These include sampling efficiency, composition of sample, interfering species and calibration errors for measurements and in-plume reduction processes. Sensitivity simulations using Global/Regional Atmospheric Heavy Metals Model (GRAHM) were performed to analyze the role of in-plume reduction on ambient concentrations and deposition of mercury in North America. The discrepancy between simulated and observed concentrations of Hg2+ and Hgp was found to be reduced when a ratio for Hg0:Hg2+:Hgp in the emissions was changed from 50:40:10 (as specified in the original inventories) to 90:8:2 to account for in-plume reduction of Hg0 processes. A significant reduction of the root mean square error (e.g., 19.22 to 11.3 pg m−3 for New Jersey site NJ54) and bias (67.8 to 19.3 pg m−3 for NJ54) for sampling sites in the Eastern United States and Canada, especially for sites near emission sources was found. Significant improvements in the spatial distribution of wet deposition of mercury in North America was noticed. Particularly, over-prediction of wet deposition near anthropogenic sources of mercury was reduced by 43%. On a regional scale, estimated wet deposition improved by a factor of 2 for areas with more than 12 μg m−2 yearly average wet deposition. Model sensitivity simulations show that the measured concentration of oxidized mercury is too low to be consistent with measured wet deposition fluxes in North America. This improvement by a factor of 2 and measurement uncertainties within a factor of 3 to 8 provides a reasonable rationale for the discrepancy of a factor of 2–10 determined by Zhang et al. (2012a).


Author(s):  
R. P. Apkarian ◽  
K. Gopalkrishnan

A cryofracture technique for scanning electron microscopy (SEM) was developed to provide an ultrastructural assessment of large numbers of chimpanzee sperm from a single centrifuged pellet. Normal spermatozoon observed in an analytical SEM at high magnification were used to determine the suitability of this technique for preserving the ultrastructural features of many sperm fractured through different regions. Although transmission electron microscopy (TEM) provides fine ultrastructural imaging of primate spermatozoon, this imaging mode does not provide large numbers of sperm in a single sample which can be rapidly scanned for profiles of ultrastructural abnormalities useful in infertility screening.


1993 ◽  
Vol 309 ◽  
Author(s):  
Doug Hamilton ◽  
C. Colvard

AbstractScanning electron microscopy (SEM) is a frequently used tool for establishing reliability where potential causes of failure are related to structural aspects that show up on a submicron scale. Conventional SEMs, however, even those equipped with field emission sources, can provide high-quality photomicrographs only up to a magnification of about 100,000×. For many purposes greater resolution (several nanometers or below) is required, in which case the usual alternative is to turn to transmission electron microscopy (TEM), in spite of the laborious sample preparation required and limited plan-view images obtained. We describe here an underutilized alternative to TEM for many applications. The in-lens field emission SEM (ILFESEM) can provide pictures above 500,000× magnification with sub-nanometer resolution, with the simple sample preparation and surface viewing advantages of the SEM. Magnification in this range is necessary to verify modern day tolerances on surface morphology and roughness, oxide and thin film structure, thickness, and step coverage, and pore sizes in adhesion layers or diffusion membranes.


2020 ◽  
Vol 20 (20) ◽  
pp. 11923-11939
Author(s):  
Kouji Adachi ◽  
Naga Oshima ◽  
Zhaoheng Gong ◽  
Suzane de Sá ◽  
Adam P. Bateman ◽  
...  

Abstract. The Amazon basin is important for understanding the global climate because of its carbon cycle and as a laboratory for obtaining basic knowledge of the continental background atmosphere. Aerosol particles play an important role in the climate and weather, and knowledge of their compositions and mixing states is necessary to understand their influence on the climate. For this study, we collected aerosol particles from the Amazon basin during the Green Ocean Amazon (GoAmazon2014/5) campaign (February to March 2014) at the T3 site, which is located about 70 km from Manaus, and analyzed them using transmission electron microscopy (TEM). TEM has better spatial resolution than other instruments, which enables us to analyze the occurrences of components that attach to or are embedded within other particles. Based on the TEM results of more than 10 000 particles from several transport events, this study shows the occurrences of individual particles including compositions, size distributions, number fractions, and possible sources of materials that mix with other particles. Aerosol particles during the wet season were from both natural sources such as the Amazon forest, Saharan desert, Atlantic Ocean, and African biomass burning and anthropogenic sources such as Manaus and local emissions. These particles mix together at an individual particle scale. The number fractions of mineral dust and sea-salt particles increased almost 3-fold when long-range transport (LRT) from the African continent occurred. Nearly 20 % of mineral dust and primary biological aerosol particles had attached sea salts on their surfaces. Sulfates were also internally mixed with sea-salt and mineral dust particles. The TEM element mapping images showed that several components with sizes of hundreds of nanometers from different sources commonly occur within individual LRT aerosol particles. We conclude that many aerosol particles from natural sources change their compositions by mixing during transport. The compositions and mixing states of these particles after emission result in changes in their hygroscopic and optical properties and should be considered when assessing their effects on climate.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Sign in / Sign up

Export Citation Format

Share Document