Overview of radionuclide migration experiments in the HADES Underground Research Facility at Mol (Belgium)

Clay Minerals ◽  
2013 ◽  
Vol 48 (2) ◽  
pp. 153-166 ◽  
Author(s):  
M. Aertsens ◽  
N. Maes ◽  
L. Van Ravestyn ◽  
S. Brassinnes

AbstractIn situ migration experiments using different radiotracers have been performed in the HADES Underground Research Facility (URF), built at a depth of 225 m in the Boom Clay formation below the SCK–CEN nuclear site at Mol (Belgium). Small-scale experiments, mimicking laboratory experiments, were carried out with strongly retarded tracers (strontium, caesium, europium, americium and technetium). Contrary to europium, americium and technetium which are subjected to colloid mediated transport, the transport of strontium and caesium can be described by the classic diffusion retardation formalism. For these last two tracers, the transport parameters derived from the in situ experiments can be compared with the laboratory-derived values. For both tracers, the apparent diffusion coefficients measured in the in situ experiments agree well with the laboratory-derived values.In the large-scale experiments (of the order of metres) performed in the URF, non-retarded or slightly retarded tracers (HTO, iodide and H14CO3–) were used. The migration behaviour of these tracers was predicted based on models applied in performance assessment calculations (classic diffusion retardation) using migration parameter values measured in laboratory experiments. These blind predictions of large-scale experiments agree well in general with the experimental measurements. Fitting the experimental in situ data leads to apparent diffusion coefficients close to those determined by the laboratory experiments. The iodide and H14CO3– data were fitted with a simple analytical expression, and the HTO data were additionally fitted numerically with COMSOL multiphysics, leading to about the same optimal values.

2008 ◽  
Vol 29 (2) ◽  
pp. 308-316 ◽  
Author(s):  
Rohit Sood ◽  
Yi Yang ◽  
Saeid Taheri ◽  
Eduardo Candelario-Jalil ◽  
Eduardo Y Estrada ◽  
...  

White matter (WM) injury after bilateral common carotid artery occlusion (BCAO) in rat is associated with disruption of the blood—brain barrier (BBB) by matrix metalloproteinases (MMPs). We hypothesized that WM injury as seen on magnetic resonance imaging (MRI) would correlate with regions of increased MMP activity. MRI was performed 3 days after BCAO surgery in rats. Apparent diffusion coefficients (ADC) were calculated and vascular permeability was quantified by the multiple-time graphical analysis (MTGA) method, using gadolinium-diethylenetriamine pentaacid (Gd-DTPA). After MRI, one group of animals had BBB permeability measured in the WM with 14C-sucrose, and another had Evans blue (EB) injected for fluorescent microscopy for MMP-2, MMP-9, tight junction proteins (TJPs), and in situ zymography. We found that ADC values were increased in WM in BCAO rats compared with controls ( P< 0.05). WM with increased ADC had leakage of EB. MMP-2 and MMP-9 activity on in situ zymograms corresponded with leakage of EB. Although increased permeability to EB could be visualized, permeability quantification with 14C-sucrose and Gd-DTPA failed to show increases and TJPs were intact. We propose that increased ADC, which is a marker of vasogenic edema, is related to activity of MMP-2 and MMP-9. MRI provides unique information that can be used to guide tissue studies of WM injury.


Stroke ◽  
2001 ◽  
Vol 32 (7) ◽  
pp. 1695-1696
Author(s):  
Pratik Mukherjee ◽  
Robert C. McKinstry ◽  
Joshua S. Shimony ◽  
Erbil Akbudak ◽  
Abraham Z. Snyder ◽  
...  

2005 ◽  
Vol 55 (3) ◽  
pp. 393-400 ◽  
Author(s):  
Omer Kitis ◽  
Hakan Altay ◽  
Cem Calli ◽  
Nilgun Yunten ◽  
Taner Akalin ◽  
...  

2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


2018 ◽  
Vol 36 (4) ◽  
pp. 1099-1116
Author(s):  
Gerald A. Lehmacher ◽  
Miguel F. Larsen ◽  
Richard L. Collins ◽  
Aroh Barjatya ◽  
Boris Strelnikov

Abstract. Four mesosphere–lower thermosphere temperature and turbulence profiles were obtained in situ within ∼30 min and over an area of about 100 by 100 km during a sounding rocket experiment conducted on 26 January 2015 at Poker Flat Research Range in Alaska. In this paper we examine the spatial and temporal variability of mesospheric turbulence in relationship to the static stability of the background atmosphere. Using active payload attitude control, neutral density fluctuations, a tracer for turbulence, were observed with very little interference from the payload spin motion, and with high precision (<0.01 %) at sub-meter resolution. The large-scale vertical temperature structure was very consistent between the four soundings. The mesosphere was almost isothermal, which means more stratified, between 60 and 80 km, and again between 88 and 95 km. The stratified regions adjoined quasi-adiabatic regions assumed to be well mixed. Additional evidence of vertical transport and convective activity comes from sodium densities and trimethyl aluminum trail development, respectively, which were both observed simultaneously with the in situ measurements. We found considerable kilometer-scale temperature variability with amplitudes of 20 K in the stratified region below 80 km. Several thin turbulent layers were embedded in this region, differing in width and altitude for each profile. Energy dissipation rates varied between 0.1 and 10 mW kg−1, which is typical for the winter mesosphere. Very little turbulence was observed above 82 km, consistent with very weak small-scale gravity wave activity in the upper mesosphere during the launch night. On the other hand, above the cold and prominent mesopause at 102 km, large temperature excursions of +40 to +70 K were observed. Simultaneous wind measurements revealed extreme wind shears near 108 km, and combined with the observed temperature gradient, isolated regions of unstable Richardson numbers (0<Ri<0.25) were detected in the lower thermosphere. The experiment was launched into a bright auroral arc under moderately disturbed conditions (Kp∼5).


1949 ◽  
Vol 2 (4) ◽  
pp. 451 ◽  
Author(s):  
AA Townsend

Extending previous work on turbulent diffusion in the wake of a circular-cylinder, a series of measurements have been made of the turbulent transport of mean stream momentum, turbulent energy, and heat in the wake of a cylinder of 0.169 cm. diameter, placed in an air-stream of velocity 1280 cm. sec.-1. It has been possible to extend the measurements to 960 diameters down-stream from the cylinder, and it 1s found that, at distances in excess of 600 diameters, the requirements of dynamical similarity are very nearly satisfied. To account for the observed rates of transport of turbulent energy and heat, it is necessary that only part of this transport be due to bulk convection by the slow large-scale motion of the jets of turbulent fluid emitted by the central, fully turbulent core of the wake, which had been supposed previously to perform most of the transport. The remainder of the transport is carried out by the small-scale diffusive motion of the turbulent eddies within the jets, and may be described by assigning diffusion coefficients to the turbulent fluid. It is found that the diffusion coefficients for momentum and heat are approximately equal, but that for turbulent energy is considerably smaller. On the basis of these hypotheses, it is possible to calculate $he form of the mean velocity distribution in good agreement with experiment, and to give a qualitative explanation of the apparently more rapid diffusion of heat.


Sign in / Sign up

Export Citation Format

Share Document